Java版本的FFT和Inverse FFT

本文提供了一个Java版本的快速傅立叶变换(FFT)及其逆变换(Inverse FFT)的实现示例。该实现假设输入序列长度为2的幂,并以清晰的代码为目标,而非极致性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近有些朋友在一些项目中需要用到Java版本的FFT和Inverse FFT,玄机逸士在网上找到了一个版本,供大家参考,现抄录如下:

(原文地址:http://www.cs.princeton.edu/introcs/97data/FFT.java.html

/*************************************************************************

 *  Compilation:  javac FFT.java

 *  Execution:    java FFT N

 *  Dependencies: Complex.java

 *

 *  Compute the FFT and inverse FFT of a length N complex sequence.

 *  Bare bones implementation that runs in O(N log N) time. Our goal

 *  is to optimize the clarity of the code, rather than performance.

 *

 *  Limitations

 *  -----------

 *   -  assumes N is a power of 2

 *

 *   -  not the most memory efficient algorithm (because it uses

 *      an object type for representing complex numbers and because

 *      it re-allocates memory for the subarray, instead of doing

 *      in-place or reusing a single temporary array)

 * 

 *************************************************************************/

 

public class FFT {

 

    // compute the FFT of x[], assuming its length is a power of 2

    public static Complex[] fft(Complex[] x) {

        int N = x.length;

 

        // base case

        if (N == 1) return new Complex[] { x[0] };

 

        // radix 2 Cooley-Tukey FFT

        if (N % 2 != 0) { throw new RuntimeException("N is not a power of 2"); }

 

        // fft of even terms

        Complex[] even = new Complex[N/2];

        for (int k = 0; k < N/2; k++) {

            even[k] = x[2*k];

        }

        Complex[] q = fft(even);

 

        // fft of odd terms

        Complex[] odd  = even;  // reuse the array

        for (int k = 0; k < N/2; k++) {

            odd[k] = x[2*k + 1];

        }

        Complex[] r = fft(odd);

 

        // combine

        Complex[] y = new Complex[N];

        for (int k = 0; k < N/2; k++) {

            double kth = -2 * k * Math.PI / N;

            Complex wk = new Complex(Math.cos(kth), Math.sin(kth));

            y[k]       = q[k].plus(wk.times(r[k]));

            y[k + N/2] = q[k].minus(wk.times(r[k]));

        }

        return y;

    }

 

 

    // compute the inverse FFT of x[], assuming its length is a power of 2

    public static Complex[] ifft(Complex[] x) {

        int N = x.length;

        Complex[] y = new Complex[N];

 

        // take conjugate

        for (int i = 0; i < N; i++) {

            y[i] = x[i].conjugate();

        }

 

        // compute forward FFT

        y = fft(y);

 

        // take conjugate again

        for (int i = 0; i < N; i++) {

            y[i] = y[i].conjugate();

        }

 

        // divide by N

        for (int i = 0; i < N; i++) {

            y[i] = y[i].times(1.0 / N);

        }

 

        return y;

 

    }

 

    // compute the circular convolution of x and y

    public static Complex[] cconvolve(Complex[] x, Complex[] y) {

 

        // should probably pad x and y with 0s so that they have same length

        // and are powers of 2

        if (x.length != y.length) { throw new RuntimeException("Dimensions don't agree"); }

 

        int N = x.length;

 

        // compute FFT of each sequence

        Complex[] a = fft(x);

        Complex[] b = fft(y);

 

        // point-wise multiply

        Complex[] c = new Complex[N];

        for (int i = 0; i < N; i++) {

            c[i] = a[i].times(b[i]);

        }

 

        // compute inverse FFT

        return ifft(c);

    }

 

 

    // compute the linear convolution of x and y

    public static Complex[] convolve(Complex[] x, Complex[] y) {

        Complex ZERO = new Complex(0, 0);

 

        Complex[] a = new Complex[2*x.length];

        for (int i = 0;        i <   x.length; i++) a[i] = x[i];

        for (int i = x.length; i < 2*x.length; i++) a[i] = ZERO;

 

        Complex[] b = new Complex[2*y.length];

        for (int i = 0;        i <   y.length; i++) b[i] = y[i];

        for (int i = y.length; i < 2*y.length; i++) b[i] = ZERO;

 

        return cconvolve(a, b);

    }

 

    // display an array of Complex numbers to standard output

    public static void show(Complex[] x, String title) {

        System.out.println(title);

        System.out.println("-------------------");

        for (int i = 0; i < x.length; i++) {

            System.out.println(x[i]);

        }

        System.out.println();

    }

 

 

   /*********************************************************************

    *  Test client and sample execution

    *

    *  % java FFT 4

    *  x

    *  -------------------

    *  -0.03480425839330703

    *  0.07910192950176387

    *  0.7233322451735928

    *  0.1659819820667019

    *

    *  y = fft(x)

    *  -------------------

    *  0.9336118983487516

    *  -0.7581365035668999 + 0.08688005256493803i

    *  0.44344407521182005

    *  -0.7581365035668999 - 0.08688005256493803i

    *

    *  z = ifft(y)

    *  -------------------

    *  -0.03480425839330703

    *  0.07910192950176387 + 2.6599344570851287E-18i

    *  0.7233322451735928

    *  0.1659819820667019 - 2.6599344570851287E-18i

    *

    *  c = cconvolve(x, x)

    *  -------------------

    *  0.5506798633981853

    *  0.23461407150576394 - 4.033186818023279E-18i

    *  -0.016542951108772352

    *  0.10288019294318276 + 4.033186818023279E-18i

    *

    *  d = convolve(x, x)

    *  -------------------

    *  0.001211336402308083 - 3.122502256758253E-17i

    *  -0.005506167987577068 - 5.058885073636224E-17i

    *  -0.044092969479563274 + 2.1934338938072244E-18i

    *  0.10288019294318276 - 3.6147323062478115E-17i

    *  0.5494685269958772 + 3.122502256758253E-17i

    *  0.240120239493341 + 4.655566391833896E-17i

    *  0.02755001837079092 - 2.1934338938072244E-18i

    *  4.01805098805014E-17i

    *

    *********************************************************************/

 

    public static void main(String[] args) {

        int N = Integer.parseInt(args[0]);

        Complex[] x = new Complex[N];

 

        // original data

        for (int i = 0; i < N; i++) {

            x[i] = new Complex(i, 0);

            x[i] = new Complex(-2*Math.random() + 1, 0);

        }

        show(x, "x");

 

        // FFT of original data

        Complex[] y = fft(x);

        show(y, "y = fft(x)");

 

        // take inverse FFT

        Complex[] z = ifft(y);

        show(z, "z = ifft(y)");

 

        // circular convolution of x with itself

        Complex[] c = cconvolve(x, x);

        show(c, "c = cconvolve(x, x)");

 

        // linear convolution of x with itself

        Complex[] d = convolve(x, x);

        show(d, "d = convolve(x, x)");

    }

}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值