相关介绍
从DAFormer溯源到这篇文章,ClassMix主要是集合了伪标签和一致性正则化,思想来源于CutMix那条研究路线,但是优化了CutMix中的标签污染的情况,后续会说。一致性正则化的半监督学习在图像分类中取得了显著的进展,主要利用强大的数据增强对未标记图片加强一致性,然而在半监督语义分割中被证明是无效的。
主要思想
- 从一张图片中随机选取一半的类粘贴到另外一张图片上,形成一个新的样本,标签也不需要真正注释,只需要获取原来的两张图对应的标签即可。
- 利用网络学习原始图像的像素级语义(利用有标签的数据集训练网络),对混合的图像的预测被强制训练成和混合前一致。
- 根据分类一致性正则化趋势,还继承了熵最小化,来鼓励网络进行低熵预测。
方法

如图所示,ClassMix使用两张没有标记的图片A、B,然后分别通过网络f(θ)生成对应的Sa、Sb。随机获取Sa中的一半的类,然后获取到类别像素点的位置为1,其余位置为0,生成一个Mask掩码M,把A、B两张图片作为输入同时加上掩码M,生成一张增强的图片Xa,其对应的标签Ya,通过Sa,Sb和M获取对应的标签Ya,由于混合策略的性质,刚开始可能会出现人工标签,但随着训练的进行,会越来越少。
伪代码如下:

Mean-Teacher
阅读一下 Mean teachers are better role models: Weight-aver

ClassMix结合伪标签和一致性正则化,优化了CutMix中的标签污染问题。它通过混合图像和标签,强制网络预测保持一致,利用Mean-Teacher和熵最小化策略。实验在Cityscapes和PascalVOC2012数据集上进行,表明在某些情况下能取得SOTA性能,但在类别较少或分布不同的数据集上效果会受影响。
最低0.47元/天 解锁文章
2879

被折叠的 条评论
为什么被折叠?



