LangChain入门教程 - 对话历史

一般情况下,聊天是没有状态的。但是很多场景我们是需要上下文记忆的。比如聊天机器人如果回答时不参考上下文信息,很容易出现前言不搭后语后语。如果需要手动维护对话历史信息,这工作量想想头都大,但是做为一个专门的AI开发工具,LangChain肯定是帮你想到了。

首先创建一个对话模型,记得自己设置环境变量QIANFAN_AKQIANFAN_SK

from langchain_community.chat_models import QianfanChatEndpoint

chatModel = QianfanChatEndpoint(
    model='ERNIE-Bot',
    endpoint='completions'
)

ChatMessageHistory

LC提供了专门的类用来管理对话历史记录,我们可以手工创建一个类试试。

from langchain.memory import ChatMessageHistory

history = ChatMessageHistory()
history.add_user_message("hi!")
history.add_ai_message("whats up?")
history.add_user_message("I'm XiaoMing")
history.add_ai_message("nice to meet you")

history.messages

'''输出
[HumanMessage(content='hi!'),
 AIMessage(content='whats up?'),
 HumanMessage(content="I'm XiaoMing"),
 AIMessage(content='nice to meet you')]
'''

ConversationBufferMemory

为了方便在对话中管理上下文信息,L

### 关于 LangChain入门教程 #### 了解 LangChain 基本概念和核心功能 LangChain 是一种用于构建语言模型应用的强大框架,旨在简化开发者创建复杂自然语言处理系统的流程。该框架不仅提供了多种预训练的大规模语言模型(LLMs),还支持定制化的提示模板(Prompt Templates)、代理(Agents)、记忆(Memory)、索引(Indexes)以及链条(Chains)。这些特性使得开发人员能够更灵活地设计对话系统和其他基于文本的应用程序[^1]。 #### 组件详解 - **Models**: 支持不同种类的语言模型,如 ChatGPT、ChatGLM 和 T5 等。 - **Prompts**: 提供管理和自定义提示的功能,有助于优化与 LLMs 的交互效果。 - **Agents**: 负责决策并执行特定任务,允许大型语言模型访问外部工具和服务。 - **Memory**: 记录会话历史记录,保持上下文连贯性。 - **Indexes**: 对文档进行结构化处理,便于后续查询操作。 - **Chains**: 定义了一系列组件之间的调用顺序,形成完整的业务逻辑流[^4]。 #### 实际应用场景展示——简单问答系统 为了更好地理解如何利用 LangChain 创建实际项目,在此提供了一个简易版的问答系统实例: ```python from langchain import LangChain, PromptTemplate, LLMMemory, SimpleIndexCreator, AgentExecutor import json # 加载配置文件中的参数设置 with open('config.json', 'r') as f: config = json.load(f) # 初始化内存对象来存储聊天记录 memory = LLMMemory() # 设置索引来加速检索过程 index_creator = SimpleIndexCreator() indexes = index_creator.create_indexes(config['documents']) # 配置提示模板以指导模型生成合适的回复 prompt_template = PromptTemplate( input_variables=["history", "input"], template="Based on the following conversation history:\n{history}\nThe user asks: {input}" ) # 构造Agent执行器来进行具体的操作 agent_executor = AgentExecutor.from_llm_and_tools(llm=config['llm'], tools=[...], memory=memory) while True: question = input("Ask a question:") # 获取当前对话历史作为背景信息的一部分 context = agent_executor.memory.get_context(inputs={"question": question}) # 将问题传递给Agent执行器获取答案 response = agent_executor.run(prompt=prompt_template.format(history=context["history"], input=question)) print(response) ``` 这段代码片段展示了如何结合多个 LangChain 组件建立一个可以持续互动的基础架构,并通过循环读取用户的输入来维持整个交流的过程[^3]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值