
python
懵圈丰
这个作者很懒,什么都没留下…
展开
-
python读文件
python的读取文件,主要是语法原创 2015-04-02 00:12:54 · 738 阅读 · 0 评论 -
删除没有购物行为的人
#!/usr/bin/env python rd = open('whoBuyWhat.csv') data3 = open('data_16_16_3.csv') wr3 = open('delNoBuyed4.5.1.csv','w+') rdt = rd.readlines() rdt_id = [] for key in rdt: te = key.split(',')原创 2015-04-05 11:07:25 · 596 阅读 · 0 评论 -
求两个文件交集
#!/usr/bin/env python rd3 = open('data_17_17_2.csv') base = open('data_17_17_3.csv') wr3 = open('delNoBuyed3DayAndStoreAndInCar4.5.2.csv','w+') bsData = base.readlines() i = 1 for key in rd3:原创 2015-04-05 11:07:55 · 877 阅读 · 0 评论 -
按时间提取数据,某比赛
#!/usr/bin/env python from datetime import datetime fl = open('tianchi_mobile_recommend_train_user.csv') ns = open('data_16_16_3.csv','w+') #na = open('data_17_17_2.csv','w+') nsf = [] naf = []原创 2015-04-05 11:06:04 · 537 阅读 · 0 评论 -
验证集 某比赛
#!/usr/bin/env python fl = open('delNoBuyed4.5.1.csv') na = open('valia_17.csv') fl.readline() submit = fl.readlines() na17 = na.readlines() sub_num = len(submit) na_num = len(na17) ri = 0 fo原创 2015-04-05 11:06:42 · 613 阅读 · 0 评论 -
点击天数分析
data1 元数据 219 precision:0.0401098901099 recall:0.0566330488751 f1:0.0469604374397 大于25天点击 168 precision:0.0431654676259 recall:0.0434445306439 f1:0.0433045495554 大于20天点击 207 preci原创 2015-04-10 21:07:38 · 527 阅读 · 0 评论 -
天池,改为开发包所需的文件输入
#!/usr/bin/env python fl = open('not.csv') wr = open('changeTpye.csv','w+') for key in fl: pt = key.split(',') wr.write(pt[0]+'::'+pt[1]+'::'+pt[2]+'::'+pt[4]) print pt fl.close() wr.clo原创 2015-04-02 22:07:06 · 788 阅读 · 0 评论 -
天池,删除时间
#!/usr/bin/env python import numpy as np from datetime import datetime #fl = open('te.csv') #item_id,item_geohash,item_category fl = open('tianchi_mobile_recommend_train_user.csv') #user_id,item原创 2015-04-02 22:05:16 · 739 阅读 · 0 评论 -
天池,删除地址
#!/usr/bin/env python fl = open('train.csv') wrr = open('no_time_but_add.csv','w+') for key in fl: pt = key.split(',') if pt[2] != '': wrr.write(key) print pt fl.close() wr.close(原创 2015-04-02 22:06:12 · 718 阅读 · 0 评论 -
python读取并切分
#!/usr/bin/env python import numpy as np fl = open('te.csv') try: text = fl.readline( ) finally: print text #fl.close( ) #print text #data = np.loadtxt("\usr\data\tianchi_mobile_recomm原创 2015-04-02 01:06:47 · 2703 阅读 · 0 评论 -
召回率,准确率,f1分析 某大赛1
前4天,通过购物车购买 precision:0.0153313777615 recall:0.177594903106 f1:0.0282260616417 前4天,通过收藏夹购买 precision:0.00326368668608 recall:0.0270772498009 f1:0.00582524271845 前4天 , 通过购物车&收藏夹购买 precision:原创 2015-04-05 10:08:18 · 1130 阅读 · 0 评论