Tracking-Learning-Detection TLD解析四 - 扩展及局限

本文探讨了TLD算法在人脸跟踪领域的局限性,并介绍了FaceTLD如何通过引入验证器来提升跟踪精度。FaceTLD在检测器基础上增加了验证器以匹配特定人脸,使用2bitBP特征与最近邻分类器,相较于原始TLD,在特定场景下显著提升了跟踪效果。

本篇文章主要基于:Face-tld: Tracking-learning-detection applied to faces. ICIP, 2010

Limitations:

  • TLD does not perform well in caseof fullout of plane rotation.In that case the, the Median-Flow trackerdrifts away from the target and can bere-initialized onlyif the object reappears withappearance seen/learned before.
  • TLD trainsonly the detector andthe trackerstay fixed. As a result the tracker makes always the same errors. An interestingextension would be to trainalso the tracking component.
  • TLD currently tracks a singleobject. Multi-target tracking opensinteresting questions howto jointly train the models and sharefeatures in order toscale.
  • Current version does not performwell for articulated objects such as pedestrians. In case ofrestricted scenarios, e.g. static camera, an interestingextension of TLD would beto include background subtraction in order to improve the tracking capabilities.

Extensions:

因为TLD是面向未知物体开发的一个长期跟踪系统。而FaceTLD则只跟踪面部,故FaceTLD与TLD相比将原来的检测器扩展为检测器与验证器。通用检测器通过线下训练来检测人脸(frontal face),在线训练的验证器来将检测结果匹配到具体某张脸。Validator以第一帧中的人脸初始化,之后会加入跟踪得到的结果更新。使用的特征叫做 2 bit binary pattern(2bitBP),使用最近邻分类器。 FaceTLD在检测人脸时比TLD效果改善在两个视频上显示提高了20%左右,因其更具有针对性。而且由于现在检测人脸的检测器很多不必再使用随机森林在线训练,送到验证器中的人脸数量也大大减少,所以时间消耗也较少。


结语:

终于将组会PPT写成了这篇文档,嗯,有一丁点成就感在,希望可以帮助到有需要的同学。加油:)
http://blog.youkuaiyun.com/outstandinger/article/details/9024763
评论 10
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值