全连接神经网络,又称DNN,全连接层的每一个结点都与上一层的所有结点相连,用来把前边提取到的特征综合起来。
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import input_data
mnist = input_data.read_data_sets('data/', one_hot=True)
# 叁数设置
n_hidden_1 = 256
n_hidden_2 = 128
n_input = 784
n_classes = 10
#使用占位符
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])
# 参数初始化
stddev = 0.1
weights = { 'w1': tf.Variable(tf.random_normal([n_input, n_hidden_1],stddev=stddev)),
'w2':tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], stddev=stddev)),
'out':tf.Variable(tf.random_normal([n_hidden_2, n_classes], stddev=stddev))}
biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_classes]))}
print ("NETWORK READY")
#网络迭代
pred = multilayer_perceptron(x, weights, biases)
#交叉熵损失函数
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
#梯度下降以0.001的学习率来最小化交叉熵
optm = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(cost)
#评估预测结果是否正确及准确率
corr = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accr = tf.reduce_mean(tf.cast(corr, "float"))
#全局变量初始化
init = tf.global_variables_initializer()
print ("FUNCTIONS READY")
training_epochs = 20
batch_size = 100
display_step = 4
#启动模型
sess = tf.Session()
sess.run(init)
# OPTIMIZE优化
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# 迭代
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
feeds = {x: batch_xs, y: batch_ys}
sess.run(optm, feed_dict=feeds)
avg_cost += sess.run(cost, feed_dict=feeds)
avg_cost = avg_cost / total_batch
if (epoch+1) % display_step == 0:
print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
feeds = {x: batch_xs, y: batch_ys}
train_acc = sess.run(accr, feed_dict=feeds)
print ("TRAIN ACCURACY: %.3f" % (train_acc))
feeds = {x: mnist.test.images, y: mnist.test.labels}
test_acc = sess.run(accr, feed_dict=feeds)
print ("TEST ACCURACY: %.3f" % (test_acc))
print ("OPTIMIZATION FINISHED")