参考: https://blog.youkuaiyun.com/rocking_struggling/article/details/108357089
class MyNetk(t.nn.Module):
def __init__(self):
super(MyNetk,self).__init__()
# print("卷积网络")
self.conv1 = nn.Sequential(
nn.Conv2d(
in_channels = 3, #(, 64, 64, 3)
out_channels = 16,
kernel_size = 3,
stride = 1,
padding = 1
), ##( , 64, 64, 16)
nn.ReLU(),
nn.MaxPool2d(kernel_size = 2)
) ##( , 32, 32, 16)
self.conv2 = nn.Sequential(
nn.Conv2d(16,32,3,1,1),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.conv3 = nn.Sequential(
nn.Conv2d(32,64,3,1,1),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.conv4 = nn.Sequential(
nn.Conv2d(64,64,3,1,1),
nn.BatchNorm2d(64),

本文介绍了一种自定义的卷积神经网络结构MyNetk,该网络包含多个卷积层,通过逐步下采样提取图像特征。文章详细展示了网络的具体实现,并讨论了网络中模块的重复使用限制。
最低0.47元/天 解锁文章
6298

被折叠的 条评论
为什么被折叠?



