Function Run Fun
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 21720 Accepted: 10807
Description
We all love recursion! Don’t we?
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
Input
The input for your program will be a series of integer triples, one per line, until the end-of-file flag of -1 -1 -1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result.
Output
Print the value for w(a,b,c) for each triple.
Sample Input
1 1 1
2 2 2
10 4 6
50 50 50
-1 7 18
-1 -1 -1
Sample Output
w(1, 1, 1) = 2
w(2, 2, 2) = 4
w(10, 4, 6) = 523
w(50, 50, 50) = 1048576
w(-1, 7, 18) = 1
Source
Pacific Northwest 1999
#include<cstring>
#include<iostream>
#include<stdio.h>
using namespace std;
int dp[100][100][100];
int dfs(int a,int b,int c)
{
if(a<=0||b<=0||c<=0)
return 1;
if(dp[a][b][c]) return dp[a][b][c];
if(a>20||b>20||c>20) return 1048576;
if(a < b && b < c) return dp[a][b][c] = dfs(a,b,c-1) + dfs(a,b-1,c-1) - dfs(a,b-1,c);
else return dp[a][b][c] = dfs(a-1,b,c) + dfs(a-1,b-1,c) + dfs(a-1,b,c-1) - dfs(a-1,b-1,c-1);
}
int main()
{
int a,b,c;
while(cin>>a>>b>>c)
{
if(a==-1&&b==-1&&c==-1)
break;
else
printf("w(%d, %d, %d) = %d\n",a,b,c,dfs(a,b,c));
}
return 0;
}
有几点注意:
1、对于题目中所给出的条件,利用简单递归即可。
2、在函数中,把每次的a,b,c所代表的值用dp[a][b][c]储存起来,以便下次调用的时候节省时间(这就是最简单的记忆化搜索),不然只能tle了。
3、输出的格式一定要写对,最好从题中复制粘贴!(不然迟早要吃亏!!!)
高效解决递归问题
本文介绍了一种使用记忆化搜索优化递归函数的方法,通过存储已计算结果避免重复计算,大幅提高了递归函数的效率。文章提供了一个具体的三参数递归函数实现案例,展示了如何在面对大量重复计算时,通过简单的技巧显著提升程序运行速度。
163

被折叠的 条评论
为什么被折叠?



