Microsoft Wins ImageNet 2015 through Feedforward LSTM without Gates

微软研究团队使用150层的深度神经网络,在ImageNet 2015竞赛中获胜。该网络采用类似长短期记忆(LSTM)的结构但没有门控机制,并解决了梯度消失问题。此外,其结构与深度高速公路网络相似,展示了LSTM概念在卷积神经网络领域的应用。

Microsoft Research dominated the ImageNet 2015 contest with a deep neural network of 150 layers [1]. Congrats to Kaiming He & Xiangyu Zhang & Shaoqing Ren & Jian Sun on the great results [2]!

Their CNN layers compute G(F(x)+x), which is essentially a feedforward Long Short-Term Memory(LSTM) [3] without gates!

Their net is similar to the very deep Highway Networks [4] (with hundreds of layers), which are feedforward LSTMs with forget gates (= gated recurrent units) [5].

The authors mention the vanishing gradient problem, but do not mention my very first student Sepp Hochreiter (now professor) who identified and analyzed this fundamental deep learning problem in 1991, years before anybody else did [6].

Apart from the above, I liked the paper [1] a lot. LSTM concepts keep invading CNN territory [e.g., 7a-e], also through GPU-friendly multi-dimensional LSTMs [8]. 


References

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition. arxiv:1512.03385

[2] ImageNet Large Scale Visual Recognition Challenge 2015 (ILSVRC2015): Results

[3] S. Hochreiter, J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735-1780, 1997. Based on TR FKI-207-95, TUM (1995). PDFLed to a lot of follow-up work, and is now heavily used by leading IT companies all over the world.

[4] R. K. Srivastava, K. Greff, J. Schmidhuber. Training Very Deep Networks. NIPS 2015;arxiv:1505.00387.

[5] F. A. Gers, J. Schmidhuber, F. Cummins. Learning to Forget: Continual Prediction with LSTM. Neural Computation, 12(10):2451-2471, 2000. PDF.

[6] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, TU Munich, 1991. Advisor: J. Schmidhuber. Overview.

[7a] 2011: First superhuman CNNs 
[7b] 2011: First human-competitive CNNs for handwriting 
[7c] 2012: First CNN to win segmentation contest 
[7d] 2012: First CNN to win contest on object discovery in large images 
[7e] Deep Learning. Scholarpedia, 10(11):32832, 2015

[8] M. Stollenga, W. Byeon, M. Liwicki, J. Schmidhuber. Parallel Multi-Dimensional LSTM, with Application to Fast Biomedical Volumetric Image Segmentation. NIPS 2015; arxiv:1506.07452.


Source: http://people.idsia.ch/~juergen/microsoft-wins-imagenet-through-feedforward-LSTM-without-gates.html

分布式微服务企业级系统是一个基于Spring、SpringMVC、MyBatis和Dubbo等技术的分布式敏捷开发系统架构。该系统采用微服务架构和模块化设计,提供整套公共微服务模块,包括集中权限管理(支持单点登录)、内容管理、支付中心、用户管理(支持第三方登录)、微信平台、存储系统、配置中心、日志分析、任务和通知等功能。系统支持服务治理、监控和追踪,确保高可用性和可扩展性,适用于中小型企业的J2EE企业级开发解决方案。 该系统使用Java作为主要编程语言,结合Spring框架实现依赖注入和事务管理,SpringMVC处理Web请求,MyBatis进行数据持久化操作,Dubbo实现分布式服务调用。架构模式包括微服务架构、分布式系统架构和模块化架构,设计模式应用了单例模式、工厂模式和观察者模式,以提高代码复用性和系统稳定性。 应用场景广泛,可用于企业信息化管理、电子商务平台、社交应用开发等领域,帮助开发者快速构建高效、安全的分布式系统。本资源包含完整的源码和详细论文,适合计算机科学或软件工程专业的毕业设计参考,提供实践案例和技术文档,助力学生和开发者深入理解微服务架构和分布式系统实现。 【版权说明】源码来源于网络,遵循原项目开源协议。付费内容为本人原创论文,包含技术分析和实现思路。仅供学习交流使用。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值