Do you know what is called ``Coprime Sequence''? That is a sequence consists of npositive
integers, and the GCD (Greatest Common Divisor) of them is equal to 1.
``Coprime Sequence'' is easy to find because of its restriction. But we can try to maximize the GCD of these integers by removing exactly one integer. Now given a sequence, please maximize the GCD of its elements.
``Coprime Sequence'' is easy to find because of its restriction. But we can try to maximize the GCD of these integers by removing exactly one integer. Now given a sequence, please maximize the GCD of its elements.
In each test case, there is an integer n(3≤n≤100000) in the first line, denoting the number of integers in the sequence.
Then the following line consists of n integers a1,a2,...,an(1≤ai≤109), denoting the elements in the sequence.
3 3 1 1 1 5 2 2 2 3 2 4 1 2 4 8
1 2 2
题意:给你一行数,去掉一个数求最大的最大公约数;
思路:若求一行数的gcd(最大公约数),只要求出前两个的最大公约数,再用这两个的最大公约数,于后面一个的数gcd,求出来这个gcd,再与和它后面的一个数求gcd,依次类推;
但题意是除去一个数,求最大gcd,求出这个数的前缀gcd,和后缀gcd,然后再用这前缀gcd和后缀gcd求gcd,枚举每一个数,求得最大的gcd;
代码:
#include<stdio.h>
#include<string.h>
#include<algorithm> // 若去掉一个数求最大gcd,求出这个数的前缀gcd,和后缀gcd,然后再用这前缀gcd和后缀gcd求gcd,枚举每一个数,求得最大的gcd
using namespace std;
#define Max 100010
#define INF 0x3f3f3f3f
int a[Max],pre[Max],hou[Max];
int gcd(int a,int b)
{
if(b==0)
return a;
else
{
int tt = gcd(b,a%b);
return tt;
}
}
int main()
{
int i,j,t,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i=0;i<n;i++)
scanf("%d",&a[i]);
pre[0] = a[0];
hou[n-1] = a[n-1];
for(i=1;i<n;i++)
pre[i] = gcd(pre[i-1],a[i]); //前缀gcd
for(i=n-2;i>=0;i--)
hou[i] = gcd(hou[i+1],a[i]); //后缀gcd;
int ans = -INF;
for(i=1;i<=n-2;i++)
ans=max(ans,gcd(pre[i-1],hou[i+1])); //求出去掉这个数后的gcd;
ans=max(ans,hou[1]); // 别忘了和去掉最前面的或最后面的比较;
ans = max(ans,pre[n-2]);
printf("%d\n",ans);
}
return 0;
}