论文笔记 EMNLP 2021|Uncertain Local-to-Global Networks for Document-Level Event Factuality Identificatio

1 简介

论文题目:Uncertain Local-to-Global Networks for Document-Level Event Factuality Identification
论文来源:EMNLP 2021 自动化所
论文链接:https://aclanthology.org/2021.emnlp-main.207.pdf
代码链接:https://github.com/CPF-NLPR/ULGN4DocEFI

1.1 创新

  • 提出一个Uncertain Local-to-Global Network (ULGN)模型,通过利用局部的不确定信息和全局结构,完成文档级别的事件真实性识别。

2 方法

在这里插入图片描述
模型的总体框架如上图,主要包括下面三个部分:

3.1 Local Uncertainty Estimation

首先使用BERT进行编码,使用高斯分布估计局部信息的不确定性,均值和方差的计算公式如下:

3.2 Uncertain Information Aggregation

通过构造图,来融合局部信息,包括三种节点(提及节点、句子节点、文档节点)和五种边(句子-句子边、文档-句子边、文档-提及边、句子-提及边、提及-提及边)。
由于局部信息是一个概率分布,使用非确定图卷积进行卷积操作,然后使用基于方差的注意力机制进行加权,具体公式如下:

3.3 Reparameterization for Prediction

使用文档节点进行预测,由于采样影响梯度的计算,使用重新参数化技巧,同时使用KL散度约束第一层的向量表示为高斯分布,具体公式如下:

3 实验

实验数据集为英文和中文事件真实性识别数据集,实验结果如下:
在这里插入图片描述
消融实验结果如下:
在这里插入图片描述
在这里插入图片描述

文档中不同个数真实值的实验结果如下:
在这里插入图片描述

文档级的事件真实性识别结果如下:
在这里插入图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hlee-top

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值