生成的实验数据:
实验结果:
实验代码:
先附链接吧:
https://download.youkuaiyun.com/download/o0haidee0o/10448563
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
#tf.set_random_seed(1)
#np.random.seed(1)#这两句没有也没毛病,所以暂时没搞懂干嘛的
# Hyper parameters超参数
N_SAMPLES = 20#20个样本
N_HIDDEN = 300#300个hidden layer
LR = 0.01#learning rate=0.01
# training data
x = np.linspace(-1, 1, N_SAMPLES)[:, np.newaxis]
#np.linspace(linear space 线性等分向量):产生20个[-1,1]线性等分的随机数
##print(x)
y = x + 0.3*np.random.randn(N_SAMPLES)[:, np.newaxis]#正态分布随机20个数*0.3+x
# test data x还是training data, y由于是随机数,所以有微小变化
test_x = x.copy()
test_y = test_x + 0.3*np.random.randn(N_SAMPLES)[:, np.newaxis]
# show data
plt.ion() # something about plotting打开交互模式
plt.figure()
plt.scatter(x, y, c='magenta', s=50, alpha=0.5, label='train')#magenta 洋红
plt.scatter(test_x, test_y, c='cyan', s=50, alpha=0.5, label='test')#cyan 亮蓝色
plt.legend(loc='upper left')
plt.ylim((-2.5, 2.5))#ylim = y limited 限制y轴显示区域
##plt.show()
# tf placeholders
tf_x = tf.placeholder(tf.float32, [None, 1])
tf_y = tf.placeholder(tf.float32, [None, 1])
tf_is_training = tf.placeholder(tf.bool, None)
# to control dropout when training and testing,training需要dropout,但testing不需要dropout
# overfitting net
o1 = tf.layers.dense(tf_x, N_HIDDEN, tf.nn.relu)
o2 = tf.layers.dense(o1, N_HIDDEN, tf.nn.relu)
o_out = tf.layers.dense(o2, 1)
o_loss = tf.losses.mean_squared_error(tf_y, o_out)
o_train = tf.train.AdamOptimizer(LR).minimize(o_loss)#LR=learning rate
# dropout net
d1 = tf.layers.dense(tf_x, N_HIDDEN, tf.nn.relu)
d1 = tf.layers.dropout(d1, rate=0.5, training=tf_is_training) # drop out 50% of inputs
d2 = tf.layers.dense(d1, N_HIDDEN, tf.nn.relu)
d2 = tf.layers.dropout(d2, rate=0.5, training=tf_is_training) # drop out 50% of inputs
d_out = tf.layers.dense(d2, 1)
d_loss = tf.losses.mean_squared_error(tf_y, d_out)
d_train = tf.train.AdamOptimizer(LR).minimize(d_loss)
sess = tf.Session()
sess.run(tf.global_variables_initializer())#虽然没有Variables但是这句话还是要有,不然就一群错误,唉
##plt.ion() # something about plotting打开交互模式
plt.figure()
for t in range(500):
sess.run([o_train, d_train], {tf_x: x, tf_y: y, tf_is_training: True}) # train, set is_training=True
if t % 10 == 0:
# plotting
plt.cla()
o_loss_, d_loss_, o_out_, d_out_ = sess.run(
[o_loss, d_loss, o_out, d_out], {tf_x: test_x, tf_y: test_y, tf_is_training: False} )
plt.scatter(x, y, c='magenta', s=50, alpha=0.3, label='train')
plt.scatter(test_x, test_y, c='cyan', s=50, alpha=0.3, label='test')
plt.plot(test_x, o_out_, 'r-', lw=3, label='overfitting')
plt.plot(test_x, d_out_, 'b--', lw=3, label='dropout(50%)')
plt.text(-0.5, -1.6, 'overfitting loss=%.4f' % o_loss_, fontdict={'size': 20,'color':'red'});
plt.text(-0.5, -2, 'dropout loss=%.4f' % d_loss_, fontdict={'size': 20, 'color': 'blue'})
plt.legend(loc='upper left')
plt.ylim((-2.5, 2.5))
plt.pause(0.1)
plt.ioff()
plt.show()