问题描述
Given a binary tree, determine if it is a valid binary search tree (BST).Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than the node’s key.
Both the left and right subtrees must also be binary search trees.Example 1:
2 / \ 1 3
Binary tree [2,1,3], return true.
Example 2:
1 / \ 2 3
Binary tree [1,2,3], return false.
解决思路
利用递归,但每次需要传入一个判断区间。代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode* root) {
if (root == NULL)
return true;
if (root->left == NULL && root->right == NULL)
return true;
long max = INT_MAX,min = INT_MIN;
if (root->left == NULL)
return root->right->val > root->val && helper(root->right,max,root->val,false,true);
if (root->right == NULL)
return root->left->val < root->val && helper(root->left,root->val,min,true,false);
if (root->right->val <= root->val || root->left->val >= root->val)
return false;
return helper(root->right,max,root->val,false,true) && helper(root->left,root->val,min,true,false);
}
bool helper(TreeNode* root,int left_max, int right_min, bool left, bool right) {
if (root == NULL)
return true;
if (!left&&(root->val > left_max || root->val <= right_min))
return false;
if (!right&&(root->val >= left_max || root->val < right_min))
return false;
if (left&&right&&(root->val >= left_max || root->val <= right_min))
return false;
if (root->left == NULL && root->right == NULL) {
return true;
}
if (root->left == NULL)
return root->right->val > root->val && helper(root->right,left_max,root->val,left,true);
if (root->right == NULL)
return root->left->val < root->val && helper(root->left,root->val,right_min,true,right);
if (root->right->val <= root->val || root->left->val >= root->val)
return false;
return helper(root->left,root->val,right_min,true,right) && helper(root->right,left_max,root->val,left,true);
}
};