Big Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 31165 Accepted Submission(s): 14464
Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 10
7 on each line.
Output
The output contains the number of digits in the factorial of the integers appearing in the input.
Sample Input
2 10 20
Sample Output
7 19
还记得那个神奇的
斯塔林公式吗?
直接就是公式了!
#include<cstdio>
#include<cstring>
#include<cmath>
#define pi acos(-1.0)
using namespace std;
int n;
int solve()
{
return (int)((n*log(n)-n+(log(2*pi*n))/2)/log(10))+1;
}
int main()
{
int N;
scanf("%d",&N);
while(N--)
{
scanf("%d",&n);
int t=solve();
printf("%d\n",t);
}
return 0;
}

本文介绍了一个计算特定整数阶乘位数的方法,使用斯塔林公式简化计算过程,适用于加密等应用场景中需要处理非常大的整数的情况。
429

被折叠的 条评论
为什么被折叠?



