uva111 lcs 但是和顺序是有关的

本文介绍了一种用于评估学生在历史事件排序任务中表现的算法。该算法通过寻找学生给出的排序与正确排序之间的最长公共子序列来确定得分,以此量化学生的部分正确答案。

Background

Many problems in Computer Science involve maximizing some measure according to constraints.

Consider a history exam in which students are asked to put several historical events into chronological order. Students who order all the events correctly will receive full credit, but how should partial credit be awarded to students who incorrectly rank one or more of the historical events?

Some possibilities for partial credit include:

  1. 1 point for each event whose rank matches its correct rank
  2. 1 point for each event in the longest (not necessarily contiguous) sequence of events which are in the correct order relative to each other.

For example, if four events are correctly ordered 1 2 3 4 then the order 1 3 2 4 would receive a score of 2 using the first method (events 1 and 4 are correctly ranked) and a score of 3 using the second method (event sequences 1 2 4 and 1 3 4 are both in the correct order relative to each other).

In this problem you are asked to write a program to score such questions using the second method.

The Problem

Given the correct chronological order of n events tex2html_wrap_inline34 as tex2html_wrap_inline36 where tex2html_wrap_inline38 denotes the ranking of event i in the correct chronological order and a sequence of student responses tex2html_wrap_inline42 where tex2html_wrap_inline44 denotes the chronological rank given by the student to event i; determine the length of the longest (not necessarily contiguous) sequence of events in the student responses that are in the correct chronological order relative to each other.

The Input

The first line of the input will consist of one integer n indicating the number of events with tex2html_wrap_inline50 . The second line will contain n integers, indicating the correct chronological order of n events. The remaining lines will each consist of n integers with each line representing a student's chronological ordering of the n events. All lines will contain n numbers in the range tex2html_wrap_inline60 , with each number appearing exactly once per line, and with each number separated from other numbers on the same line by one or more spaces.

The Output

For each student ranking of events your program should print the score for that ranking. There should be one line of output for each student ranking.

Sample Input 1

4
4 2 3 1
1 3 2 4
3 2 1 4
2 3 4 1

Sample Output 1

1
2
3

Sample Input 2

10
3 1 2 4 9 5 10 6 8 7
1 2 3 4 5 6 7 8 9 10
4 7 2 3 10 6 9 1 5 8
3 1 2 4 9 5 10 6 8 7
2 10 1 3 8 4 9 5 7 6

Sample Output 2

65109


【题目大意】

一个历史考试,有n个历史事件, 它们之间的年份是不同的,要学生把这些事件按照正确的顺序排列出来。有两种记分方式,采用的是第二种: 假设有历史事件1,2,3,4, 它们正确的时间顺序是1,2,3,4, 然后假设学生的答案是1,3,2,4, 那么按照相对顺序正确的数量,答对了三个(1,2,4或者1,3,4),也就是它与正确答案的最长公共子序列长度是3,便是答对的数量。


【分析与总结】

最长公共子序列模板题,但是这题的输入是个很大的坑,他的输入是按照顺序,事件1是排在第几位,事件2是排在第几位......, 所以要先把输入转换成正确的顺序。

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int order[25], arr[25], d[25][25];
int main()
{
    int n, t;
    scanf("%d",&n);// 读入正确的答案顺序
    for(int i=0; i<n; ++i)
        {
         scanf("%d",&t);
         order[t-1]=i+1; //放入他排名的位置
        }
    while(~scanf("%d",&t))
    {
        arr[t-1]=1;
        for(int i=1; i<n; ++i)
        {
            scanf("%d",&t);
            arr[t-1]=i+1;
        }
    // 求出最长公共子序列长度
        memset(d, 0, sizeof(d));
        for(int i=1; i<=n; ++i)
            for(int j=1; j<=n; ++j)
            {
                if(order[i-1]==arr[j-1])
                    d[i][j]=d[i-1][j-1]+1;
                else
                    d[i][j]=max(d[i-1][j],d[i][j-1]);
            }
        printf("%d\n", d[n][n]);
    }
    return 0;
}

【EI复现】基于主从博弈的新型城镇配电系统产消者竞价策略【IEEE33节点】(Matlab代码实现)内容概要:本文介绍了基于主从博弈理论的新型城镇配电系统中产消者竞价策略的研究,结合IEEE33节点系统,利用Matlab进行仿真代码实现。该研究聚焦于电力市场环境下产消者(既生产又消费电能的主体)之间的博弈行为建模,通过构建主从博弈模型优化竞价策略,提升配电系统运行效率与经济性。文中详细阐述了模型构建思路、优化算法设计及Matlab代码实现过程,旨在复现高水平期刊(EI收录)研究成果,适用于电力系统优化、能源互联网及需求响应等领域。; 适合人群:具备电力系统基础知识一定Matlab编程能力的研究生、科研人员及从事能源系统优化工作的工程技术人员;尤其适合致力于电力市场博弈、分布式能源调度等方向的研究者。; 使用场景及目标:① 掌握主从博弈在电力系统产消者竞价中的建模方法;② 学习Matlab在电力系统优化仿真中的实际应用技巧;③ 复现EI级别论文成果,支撑学术研究或项目开发;④ 深入理解配电系统中分布式能源参与市场交易的决策机制。; 阅读建议:建议读者结合IEEE33节点标准系统数据,逐步调试Matlab代码,理解博弈模型的变量设置、目标函数构建与求解流程;同时可扩展研究不同市场机制或引入不确定性因素以增强模型实用性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值