基于稀疏编码的图像超分辨率

1.介绍

参考文章:Image Super-Resolution Via Sparse Representation | IEEE Journals & Magazine | IEEE Xplore

2.代码

SR_function.py

import numpy as np

from skimage.transform import resize
from scipy.signal import convolve2d
from scipy import sparse
from tqdm import tqdm


# brojection 模块
def gauss2D(shape,sigma):

    m,n = [(ss-1.)/2. for ss in shape]
    y,x = np.ogrid[-m:m+1,-n:n+1]
    h = np.exp( -(x*x + y*y) / (2.*sigma*sigma) )
    h[ h < np.finfo(h.dtype).eps*h.max() ] = 0
    sumh = h.sum()
    if sumh != 0:
        h /= sumh
    return h


def backprojection(img_hr, img_lr, maxIter):
    p = gauss2D((5, 5), 1)
    p = np.multiply(p, p)
    p = np.divide(p, np.sum(p))

    for i in range(maxIter):
        img_lr_ds = resize(img_hr, img_lr.shape, anti_aliasing=1)
        img_diff = img_lr - img_lr_ds

        img_diff = resize(img_diff, img_hr.shape)
        img_hr += convolve2d(img_diff, p, 'same')
    return img_hr

#normalize 模块
def normalize_signal(img, img_lr_ori, channel):
    if np.mean(img[:, :, channel]) * 255 > np.mean(img_lr_ori[:, :, channel]):
        ratio = np.mean(img_lr_ori[:, :, channel]) / (np.mean(img[:, :, channel]) * 255)
        img[:, :, channel] = np.multiply(img[:, :, channel], ratio)
    elif np.mean(img[:, :, channel]) * 255 < np.mean(img_lr_ori[:, :, channel]):
        ratio = np.mean(img_lr_ori[:, :, channel]) / (np.mean(img[:, :, channel]) * 255)
        img[:, :, channel] = np.multiply(img[:, :, channel], ratio)
    return img[:, :, channel]

def normalize_max(img):
    for m in range(img.shape[0]):
        for n in range(img.shape[1]):
            if img[m, n, 0] > 1:
                img[m, n, 0] = 1
            if img[m, n, 1] > 1:
                img[m, n, 1] = 1
            if img[m, n, 2] > 1:
                img[m, n, 2] = 1
    return img

#SR模块
def extract_lr_feat(img_lr):
    h, w = img_lr.shape
    img_lr_feat = np.zeros((h, w, 4))

    # 一阶梯度
    hf1 = [[-1, 0, 1], ] * 3
    vf1 = np.transpose(hf1)

    img_lr_feat[:, :, 0] = convolve2d(img_lr, hf1, 'same')
    img_lr_feat[:, :, 1] = convolve2d(img_lr, vf1, 'same')

    #  二阶
    hf2 = [[1, 0, -2, 0, 1], ] * 3
    vf2 = np.transpose(hf2)

    img_lr_feat[:, :, 2] = convolve2d(img_lr, hf2, 'same')
    img_lr_feat[:, :, 3] = convolve2d(img_lr, vf2, 'same')

    return img_lr_feat

def create_list_step(start, stop, step):
    list_step = []
    for i in range(start, stop, step):
        list_step = np.append(list_step, i)
    return list_step

def lin_scale(xh, us_norm):
    hr_norm = np.sqrt(np.sum(np.multiply(xh, xh)))

    if hr_norm > 0:
        s = us_norm * 1.2 / hr_norm
        xh = np.multiply(xh, s)
    return xh

def fss(lmbd, A, b):
    EPS = 1e-9
    x = np.zeros((A.shape[1], 1))    
    grad = np.dot(A, x) + b     
    ma = np.amax(np.multiply(abs(grad), np.isin(x, 0).T), axis=0)
    mi = np.zeros(grad.shape[1])
    for j in range(grad.shape[1]):
        for i in range(grad.shape[0]):
            if grad[i, j] == ma[j]:
                mi[j] = i
                break
    mi = mi.astype(int)   
    while True:

        if np.all(grad[mi]) > lmbd + EPS:
            x[mi] = (lmbd - grad[mi]) / A[mi, mi]
        elif np.all(grad[mi]) < - lmbd - EPS:
            x[mi] = (- lmbd - grad[mi]) / A[mi, mi]
        else:
            if np.all(x == 0):
                break

        while True:
            
            a = np.where(x != 0)
            Aa = A[a, a]
            ba = b[a]
            xa = x[a]

            vect = -lmbd * np.sign(xa) - ba
            x_new = np.linalg.lstsq(Aa, vect)
            idx = np.where(x_new != 0)
            o_new = np.dot((vect[idx] / 2 + ba[idx]).T, x_new[idx]) + lmbd * np.sum(abs(x_new[idx]))

            s = np.where(np.multiply(xa, x_new) < 0) 
            if np.all(s == 0):
                x[a] = x_new
                loss = o_new
                break
            x_min = x_new
            o_min = o_new
            d = x_new - xa
            t = np.divide(d, xa)
            for zd in s.T:
                x_s = xa - d / t[zd]
                x_s[zd] = 0
                idx = np.where(x_s == 0)
                o_s = np.dot((np.dot(Aa[idx, idx], x_s[idx]) / 2 + ba[idx]).T, x_s[idx] + lmbd * np.sum(abs(x_s[idx])))
                if o_s < o_min:
                    x_min = x_s
                    o_min = o_s
            
            x[a] = x_min
            loss = o_min
        
        grad = np.dot(A, sparse.csc_matrix(x)) + b

        ma, mi = max(np.multiply(abs(grad), np.where(x == 0)))
        if ma <= lmbd + EPS:
            break
    
    return x

# 超分
def ScSR(image, size, upsample_factor, Dh, Dl, lmbd, overlap):
    
    patch_size = 3

    img_us = resize(image, size) 
    img_us_height, img_us_width = img_us.shape

    img_hr = np.zeros(img_us.shape)
    cnt_matrix = np.zeros(img_us.shape)

    img_lr_y_feat = extract_lr_feat(img_hr) 
    
    gridx = np.append(create_list_step(0, img_us_width - patch_size - 1, patch_size - overlap), img_us_width - patch_size - 1)
    gridy = np.append(create_list_step(0, img_us_height - patch_size - 1, patch_size - overlap), img_us_height - patch_size - 1)

    count = 0

    for m in tqdm(range(0, len(gridx))):
        for n in range(0, len(gridy)):
            count += 1
            xx = int(gridx[m])
            yy = int(gridy[n])

            us_patch = img_us[yy : yy + patch_size, xx : xx + patch_size]
            us_mean = np.mean(np.ravel(us_patch, order='F'))
            us_patch = np.ravel(us_patch, order='F') - us_mean
            us_norm = np.sqrt(np.sum(np.multiply(us_patch, us_patch)))

            feat_patch = img_lr_y_feat[yy : yy + patch_size, xx : xx + patch_size, :]
            feat_patch = np.ravel(feat_patch, order='F')
            feat_norm = np.sqrt(np.sum(np.multiply(feat_patch, feat_patch)))

            if feat_norm > 1:
                y = np.divide(feat_patch, feat_norm)
            else:
                y = feat_patch

            b = np.dot(np.multiply(Dl.T, -1), y)
            w = fss(lmbd, Dl, b)

            hr_patch = np.dot(Dh, w)
            hr_patch = lin_scale(hr_patch, us_norm)

            hr_patch = np.reshape(hr_patch, (patch_size, -1))
            hr_patch += us_mean

            img_hr[yy : yy + patch_size, xx : xx + patch_size] += hr_patch
            cnt_matrix[yy : yy + patch_size, xx : xx + patch_size] += 1

    index = np.where(cnt_matrix < 1)[0]
    img_hr[index] = img_us[index]

    cnt_matrix[index] = 1
    img_hr = np.divide(img_hr, cnt_matrix)
    
    return img_hr

train_dict.py



import numpy as np
import pickle
from os import listdir
from skimage import io
from skimage.transform import resize, rescale
from scipy.signal import convolve2d
from tqdm import tqdm
from spams import trainDL
def sample_patches(img, patch_size, patch_num, upscale):
    # if img.shape[2] == 3:
    #     hIm = rgb2gray(img)
    # else:
    #     hIm = img
    hIm = img
    # 生成低分辨率对部分
    lIm = rescale(hIm, 1 / upscale)
    lIm = resize(lIm, hIm.shape)
    nrow, ncol = hIm.shape

    x = np.random.permutation(range(nrow - 2 * patch_size)) + patch_size
    y = np.random.permutation(range(ncol - 2 * patch_size)) + patch_size

    X, Y = np.meshgrid(x, y)
    xrow = np.ravel(X, order='F')
    ycol = np.ravel(Y, order='F')

    if patch_num < len(xrow):
        xrow = xrow[0 : patch_num]
        ycol = ycol[0 : patch_num]

    patch_num = len(xrow)

    H = np.zeros((patch_size ** 2, len(xrow)))
    L = np.zeros((4 * patch_size ** 2, len(xrow)))

    # 计算一阶以及二阶梯度
    hf1 = [[-1, 0, 1], ] * 3
    vf1 = np.transpose(hf1)

    lImG11 = convolve2d(lIm, hf1, 'same')
    lImG12 = convolve2d(lIm, vf1, 'same')

    hf2 = [[1, 0, -2, 0, 1], ] * 3
    vf2 = np.transpose(hf2)

    lImG21 = convolve2d(lIm, hf2, 'same')
    lImG22 = convolve2d(lIm, vf2, 'same')

    for i in tqdm(range(patch_num)):
        row = xrow[i]
        col = ycol[i]

        Hpatch = np.ravel(hIm[row : row + patch_size, col : col + patch_size], order='F')
        # Hpatch = np.reshape(Hpatch, (Hpatch.shape[0], 1))
        
        Lpatch1 = np.ravel(lImG11[row : row + patch_size, col : col + patch_size], order='F')
        Lpatch1 = np.reshape(Lpatch1, (Lpatch1.shape[0], 1))
        Lpatch2 = np.ravel(lImG12[row : row + patch_size, col : col + patch_size], order='F')
        Lpatch2 = np.reshape(Lpatch2, (Lpatch2.shape[0], 1))
        Lpatch3 = np.ravel(lImG21[row : row + patch_size, col : col + patch_size], order='F')
        Lpatch3 = np.reshape(Lpatch3, (Lpatch3.shape[0], 1))
        Lpatch4 = np.ravel(lImG22[row : row + patch_size, col : col + patch_size], order='F')
        Lpatch4 = np.reshape(Lpatch4, (Lpatch4.shape[0], 1))

        Lpatch = np.concatenate((Lpatch1, Lpatch2, Lpatch3, Lpatch4), axis=1)
        Lpatch = np.ravel(Lpatch, order='F')

        if i == 0:
            HP = np.zeros((Hpatch.shape[0], 1))
            LP = np.zeros((Lpatch.shape[0], 1))
            # print(HP.shape)
            HP[:, i] = Hpatch - np.mean(Hpatch)
            LP[:, i] = Lpatch
        else:
            HP_temp = Hpatch - np.mean(Hpatch)
            HP_temp = np.reshape(HP_temp, (HP_temp.shape[0], 1))
            HP = np.concatenate((HP, HP_temp), axis=1)
            LP_temp = Lpatch
            LP_temp = np.reshape(LP_temp, (LP_temp.shape[0], 1))
            LP = np.concatenate((LP, LP_temp), axis=1)
    
    return HP, LP

def rnd_smp_patch(img_path, patch_size, num_patch, upsample):
    
    img_dir = listdir(img_path)

    img_num = len(img_dir)
    nper_img = np.zeros((img_num, 1))

    for i in tqdm(range(img_num)):
        img = io.imread('{}{}'.format(img_path, img_dir[i]))
        nper_img[i] = img.shape[0] * img.shape[1]

    nper_img = np.floor(nper_img * num_patch / np.sum(nper_img, axis=0))

    for i in tqdm(range(img_num)):
        patch_num = int(nper_img[i])
        img = io.imread('{}{}'.format(img_path, img_dir[i]))
        H, L = sample_patches(img, patch_size, patch_num, upsample)
        if i == 0:
            Xh = H
            Xl = L
        else:
            Xh = np.concatenate((Xh, H), axis=1)
            Xl = np.concatenate((Xl, L), axis=1)
    return Xh, Xl

def patch_pruning(Xh, Xl):
    pvars = np.var(Xh, axis=0)
    threshold = np.percentile(pvars, 10)
    idx = pvars > threshold
    # print(pvars)
    Xh = Xh[:, idx]
    Xl = Xl[:, idx]
    return Xh, Xl

# 参数设置

dict_size = 1024
lmbd = 0.1
patch_size = 3
num_samples = 1000000
upsample_factor = 2

# 读取路径
train_img_path = r'D:\pycharm\pytorch\study\data\sonar_ship/'

Xh, Xl = rnd_smp_patch(train_img_path, patch_size, num_samples, upsample_factor)

Xh, Xl = patch_pruning(Xh, Xl)
Xh = np.asfortranarray(Xh)
Xl = np.asfortranarray(Xl)

# 字典学习
Dh = trainDL(Xh, K=dict_size, lambda1=lmbd, iter=100)
Dl = trainDL(Xl, K=dict_size, lambda1=lmbd, iter=100)

# 保存路径
with open('data/dicts/'+ 'Dh_' + str(dict_size) + '_US' + str(upsample_factor) + '_L' + str(lmbd) + '_PS' + str(patch_size) + '.pkl', 'wb') as f:
    pickle.dump(Dh, f, pickle.HIGHEST_PROTOCOL)

with open('data/dicts/'+ 'Dl_' + str(dict_size) + '_US' + str(upsample_factor) + '_L' + str(lmbd) + '_PS' + str(patch_size) + '.pkl', 'wb') as f:
    pickle.dump(Dl, f, pickle.HIGHEST_PROTOCOL)

makedata_bicubic.py


from os import listdir
import cv2
from tqdm import tqdm
###需要修改的部分
train_hr_path = 'path'
train_lr_path = 'path'

val_hr_path = 'path'
val_lr_path = 'path'

scale = 2
###

# 训练集的下采样
num_train_images = len(listdir(train_hr_path))
for i in tqdm(range(num_train_images)):
    img_name = listdir(train_hr_path)[i]
    img = cv2.imread('{}{}'.format(train_hr_path, img_name),0)
    scaled_image = cv2.resize(img, (0, 0), fx=(1/scale), fy=(1/scale), interpolation=cv2.INTER_CUBIC)
    cv2.imwrite('{}{}'.format(train_lr_path, img_name), scaled_image)

# 验证集的下采样

num_val_images = len(listdir(val_hr_path))
for i in tqdm(range(num_val_images)):
    img_name = listdir(val_hr_path)[i]
    img = cv2.imread('{}{}'.format(val_hr_path, img_name),0)
    cv2.imwrite('{}{}'.format(val_hr_path, img_name), img)
    scaled_image = cv2.resize(img, (0, 0), fx=(1/scale), fy=(1/scale), interpolation=cv2.INTER_CUBIC)
    cv2.imwrite('{}{}'.format(val_lr_path, img_name), scaled_image)

val_image.py

import cv2
import numpy as np
import pickle

from os import listdir, makedirs
from os.path import isdir

from skimage.color import rgb2ycbcr, ycbcr2rgb, rgb2gray
from skimage.transform import resize

from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import normalize

from tqdm import tqdm




from ScSR import ScSR
from backprojection import backprojection

def normalize_signal(img, img_lr_ori, channel):
    if np.mean(img[:, :, channel]) * 255 > np.mean(img_lr_ori[:, :, channel]):
        ratio = np.mean(img_lr_ori[:, :, channel]) / (np.mean(img[:, :, channel]) * 255)
        img[:, :, channel] = np.multiply(img[:, :, channel], ratio)
    elif np.mean(img[:, :, channel]) * 255 < np.mean(img_lr_ori[:, :, channel]):
        ratio = np.mean(img_lr_ori[:, :, channel]) / (np.mean(img[:, :, channel]) * 255)
        img[:, :, channel] = np.multiply(img[:, :, channel], ratio)
    return img[:, :, channel]

def normalize_max(img):
    for m in range(img.shape[0]):
        for n in range(img.shape[1]):
            if img[m, n, 0] > 1:
                img[m, n, 0] = 1
            if img[m, n, 1] > 1:
                img[m, n, 1] = 1
            if img[m, n, 2] > 1:
                img[m, n, 2] = 1
    return img
###需要修改的部分
D_size = 1024
US_mag = 2
lmbd = 0.1
patch_size = 3
###需要修改的部分

dict_name = str(D_size) + '_US' + str(US_mag) + '_L' + str(lmbd) + '_PS' + str(patch_size)

with open('data/dicts/Dh_' + dict_name + '.pkl', 'rb') as f:
    Dh = pickle.load(f)
Dh = normalize(Dh)
with open('data/dicts/Dl_' + dict_name + '.pkl', 'rb') as f:
    Dl = pickle.load(f)
Dl = normalize(Dl)

img_lr_dir = 'data/val_lr/'
img_hr_dir = 'data/val_hr/'
###可以修改的部分
overlap = 1
lmbd = 0.3
upsample = 2
max_iteration = 1000
###


img_lr_file = listdir(img_lr_dir)

for i in tqdm(range(len(img_lr_file))):
    # for i in tqdm(range(1)):#单张验证
    img_name = img_lr_file[i]
    img_name_dir = list(img_name)
    img_name_dir = np.delete(np.delete(np.delete(np.delete(img_name_dir, -1), -1), -1), -1)
    img_name_dir = ''.join(img_name_dir)
    if isdir('path' + dict_name + '_' + img_name_dir) == False:
        new_dir = makedirs('{}{}'.format('path' + dict_name + '_', img_name_dir))
    img_lr = cv2.imread('{}{}'.format(img_lr_dir, img_name))

    ## 读取和保存图片
    img_hr = cv2.imread('{}{}'.format(img_hr_dir, img_name))
    cv2.imwrite('{}{}{}{}'.format('data/results/set5_sigma25/' + dict_name + '_', img_name_dir, '/', '3GT.png'), img_hr)

    # 改变颜色空间
    img_hr_y = rgb2ycbcr(img_hr)[: ,: ,0]
    img_lr_ori = img_lr
    temp = img_lr
    imr_lr = rgb2ycbcr(img_lr)
    img_lr_y = img_lr[: ,: ,0]
    img_lr_cb = img_lr[: ,: ,1]
    img_lr_cr = img_lr[: ,: ,2]

    img_sr_cb = resize(img_lr_cb, (img_hr.shape[0], img_hr.shape[1]), order=0)
    img_sr_cr = resize(img_lr_cr, (img_hr.shape[0], img_hr.shape[1]), order=0)

    # 超分
    img_sr_y = ScSR(img_lr_y, img_hr_y.shape, upsample, Dh, Dl, lmbd, overlap)
    img_sr_y = backprojection(img_sr_y, img_lr_y, max_iteration)
    # img_sr_y = resize(img_lr_y, (img_hr.shape[0], img_hr.shape[1]), order=0) # Loop check
    img_sr = np.stack((img_sr_y, img_sr_cb, img_sr_cr), axis=2)
    img_sr = ycbcr2rgb(img_sr)

    for channel in range(img_sr.shape[2]):
        img_sr[:, :, channel] = normalize_signal(img_sr, img_lr_ori, channel)

    img_sr = normalize_max(img_sr)



    ## pnsr的计算
    rmse_sr_hr = np.sqrt(mean_squared_error(img_hr_y, img_sr_y))
    # psnr_sr_hr = 10*np.log10(255.0**2/rmse_sr_hr**2)
    psnr_sr_hr = 10 *np.log10(1.0** 2 /rmse_sr_hr**2)
    psnr_sr_hr = np.zeros((1,)) + psnr_sr_hr
    np.savetxt('{}{}{}{}'.format('path' + dict_name + '_', img_name_dir, '/', 'PSNR_SR.txt'), psnr_sr_hr)

    ## 保存图片
    cv2.imwrite('{}{}{}{}'.format('path' + dict_name + '_', img_name_dir, '/', '2SR.png'), img_sr)

3.运行过程

1)运行train_dict.py训练字典

2)将所需数据路径输入至makedata_bicubic.py中进行处理

3)在val_image.py根据需求设置参数后运行,查看超分效果

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水水水淼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值