目录
一、类的扩展
1.1 类扩展的本质
@interface TestB : NSObject
@end
@interface TestB () {
NSString *_name;
}
@property (nonatomic, assign) int ext_b;
- (void)ext_testB;
@end
@implementation TestB
- (void)ext_testB {
NSLog(@"TestA method name : %s", __func__);
}
@end
类的扩展只能位于TestB类的@interface与@implementation之间。它可以包括成员变量、属性、方法。通过clang把代码转为c++查看
struct TestB_IMPL {
struct NSObject_IMPL NSObject_IVARS;
NSString *_name;
int _ext_b;
};
static void _I_TestB_ext_testB(TestB * self, SEL _cmd) {
NSLog((NSString *)&__NSConstantStringImpl__var_folders_fq_p4vwghvd0hnf6v4v0cylt6xc0000gn_T_TestB_42363d_mi_0, __func__);
}
static int _I_TestB_ext_b(TestB * self, SEL _cmd) { return (*(int *)((char *)self + OBJC_IVAR_$_TestB$_ext_b)); }
static void _I_TestB_setExt_b_(TestB * self, SEL _cmd, int ext_b) { (*(int *)((char *)self + OBJC_IVAR_$_TestB$_ext_b)) = ext_b; }
从中可以看出它的属性可以自动实现getter/setter方法,也会生成成员变量,并且直接加入到了TestB_IMPL结构体中,并没有像分类那样是个单独的结构体,显然类的扩展实质上就是类的一部分,只是不能像在类的@interface中声明的属性和方法那样直接被外部调用,相当于对外部隐匿起来了。
//这里ext_b、setExt_b出现了两次,用@property写的属性自动生成就会加入4个,自己手写getter/setter和成员变量就只会加入2个。应该是编译器做的处理,先不管它。
static struct /*_method_list_t*/ {
unsigned int entsize; // sizeof(struct _objc_method)
unsigned int method_count;
struct _objc_method method_list[5];
} _OBJC_$_INSTANCE_METHODS_TestB __attribute__ ((used, section ("__DATA,__objc_const"))) = {
sizeof(_objc_method),
5,
{{(struct objc_selector *)"ext_testB", "v16@0:8", (void *)_I_TestB_ext_testB},
{(struct objc_selector *)"ext_b", "i16@0:8", (void *)_I_TestB_ext_b},
{(struct objc_selector *)"setExt_b:", "v20@0:8i16", (void *)_I_TestB_setExt_b_},
{(struct objc_selector *)"ext_b", "i16@0:8", (void *)_I_TestB_ext_b},
{(struct objc_selector *)"setExt_b:", "v20@0:8i16", (void *)_I_TestB_setExt_b_}}
};
从上面代码可以看出类扩展在编译时方法已经加入到方法列表中了,也可以通过查看ro来证明这一点,在readClass方法中打上断点。
(lldb) p *(ro->baseMethodList)
(method_list_t) $0 = {
entsize_list_tt<method_t, method_list_t, 3> = {
entsizeAndFlags = 24
count = 4
first = {
name = "ext_testB"
types = 0x0000000100003ec0 "v16@0:8"
imp = 0x0000000100003d30 (KCObjc`-[TestB ext_testB])
}
}
}
(lldb) p $0.get(0)
(method_t) $1 = {
name = "ext_testB"
types = 0x0000000100003ec0 "v16@0:8"
imp = 0x0000000100003d30 (KCObjc`-[TestB ext_testB])
}
(lldb) p $0.get(1)
(method_t) $2 = {
name = "ext_b"
types = 0x0000000100003ee9 "i16@0:8"
imp = 0x0000000100003d60 (KCObjc`-[TestB ext_b])
}
(lldb) p $0.get(2)
(method_t) $3 = {
name = "setExt_b:"
types = 0x0000000100003ef1 "v20@0:8i16"
imp = 0x0000000100003d80 (KCObjc`-[TestB setExt_b:])
}
(lldb) p $0.get(3)
(method_t) $4 = {
name = ".cxx_destruct"
types = 0x0000000100003ec0 "v16@0:8"
imp = 0x0000000100003da0 (KCObjc`-[TestB .cxx_destruct])
}
可以看出在类还没有进行实现前ro中的方法列表中就有了扩展中的方法。可以间接说明类扩展是在编译期间就被加入到了类中。
1.2 分类 VS 类扩展
分类和类扩展如果是单独的文件都需要被导入。分类一般用来为类添加方法,类扩展可以用来减少不想对外暴露的属性、方法,但并不是真正的私有。
分类 | 类扩展 |
---|---|
运行时加载 | 编译时加载 |
有单独的结构category_t,通过运行时附加的方式 | 直接加入主类结构 |
有.h、.m文件 | 只有.h文件, 导入后与主类共用.m文件 |
不能给类添加成员变量 | 可以添加成员变量 |
属性只会生成getter/setter声明,可通过关联对象添加getter/setter实现 | 属性会生成getter/setter方法声明和实现,也会生成成员变量 |
方法可外部访问 | 因一般直接写在主类的.m文件中,方法对外部是隐匿的。虽也可写在分类中,但没实际意义 |
二、关联对象
#import <objc/runtime.h>
static const void *gc_kOneStr = &gc_kOneStr;
@implementation TestA (One)
- (NSString *)oneStr {
return objc_getAssociatedObject(self, gc_kOneStr);
}
- (void)setOneStr:(NSString *)oneStr {
objc_setAssociatedObject(self, gc_kOneStr, oneStr, OBJC_ASSOCIATION_COPY_NONATOMIC);
}
分类不能添加成员变量,但可以通过关联对象的方式为类添加属性的实现。
int main(int argc, const char * argv[]) {
@autoreleasepool {
TestA *testA = [[TestA alloc] init];
testA.oneStr = @"one";
NSLog(@"%@", testA.oneStr);
}
return 0;
}
运行后打印出one,说明通过关联对象的方式成功的设置了oneStr的值,也成功取出了设置的值。
2.1 objc_setAssociatedObject源码解析
/* 定义了objc_hook_setAssociatedObject函数指针
object:关联的源对象
key:关联的key
value: 与对象的key相关联的值。传递nil以清除现有的关联。
policy:关联选择的策略
*/
typedef void (*objc_hook_setAssociatedObject)(id _Nonnull object, const void * _Nonnull key,id _Nullable value, objc_AssociationPolicy policy);
static void _base_objc_setAssociatedObject(id object, const void *key, id value, objc_AssociationPolicy policy)
{
_object_set_associative_reference(object, key, value, policy);
}
static ChainedHookFunction<objc_hook_setAssociatedObject> SetAssocHook{_base_objc_setAssociatedObject};
template <typename Fn>
class ChainedHookFunction {
std::atomic<Fn> hook{nil};
public:
//构造方法,结合上面可以得知这里的f为_base_objc_setAssociatedObject,而Fn为objc_hook_setAssociatedObject
ChainedHookFunction(Fn f) : hook{f} { };
Fn get() {
return hook.load(std::memory_order_acquire);
}
void set(Fn newValue, Fn *oldVariable)
{
Fn oldValue = hook.load(std::memory_order_relaxed);
do {
*oldVariable = oldValue;
} while (!hook.compare_exchange_weak(oldValue, newValue,
std::memory_order_release,
std::memory_order_relaxed));
}
};
void objc_setAssociatedObject(id object, const void *key, id value, objc_AssociationPolicy policy)
{
//结合上面可把下面代码看作_base_objc_setAssociatedObject(object, key, value, policy);来理解
SetAssocHook.get()(object, key, value, policy);
}
从上面可以了解到对objc_setAssociatedObject方法的调用其实就是对_base_objc_setAssociatedObject方法的调用,_base_objc_setAssociatedObject中又调用了_object_set_associative_reference方法。
void _object_set_associative_reference(id object, const void *key, id value, uintptr_t policy)
{
if (!object && !value) return;
if (object->getIsa()->forbidsAssociatedObjects())
//类不允许在其实例上关联对象
_objc_fatal("objc_setAssociatedObject called on instance (%p) of class %s which does not allow associated objects", object, object_getClassName(object));
DisguisedPtr<objc_object> disguised{(objc_object *)object};
ObjcAssociation association{policy, value};
// retain the new value (if any) outside the lock.
//如果value存在,根据policy的值对value值作相应的操作。
association.acquireValue();
{//局部作用域
//manager在构造时加锁,析构时开锁
AssociationsManager manager;
//DenseMap<DisguisedPtr<objc_object>, DenseMap<const void *, ObjcAssociation>> 就是个嵌套的的DenseMap, manager.get()操作的是一个static的_mapStorage变量,而associations的数据是从manager.get()初始化来的,而且manager.get()返回的是带&的引用,所以associations也可以看做是静态的。
AssociationsHashMap &associations(manager.get());
if (value) {
//try_emplace在前面分类就已经解释过了,在这disguised作为key查找,如果已经在associations表中,就把查找到的桶作为DenseMapIterator的位置指针进行初始化,然后用pair包装后返回;key没在associations表中就把disguised作为key,ObjectAssociationMap{}作为value存入桶中,然后把该桶作为DenseMapIterator的位置指针进行初始化,然后用pair包装后返回。返回值类型std::pair<DenseMapIterator, bool>
auto refs_result = associations.try_emplace(disguised, ObjectAssociationMap{});
if (refs_result.second) {
//能进来这里,说明disguised为key的桶是新插入进来的,所以根据条件设置isa_t中的has_assoc位为true
object->setHasAssociatedObjects();
}
//找到associations中的disguised对应的ObjectAssociationMap表
auto &refs = refs_result.first->second;
//用key在ObjectAssociationMap表中查找,如果表中不存在该key那么就把key和association对应插入到ObjectAssociationMap中
auto result = refs.try_emplace(key, std::move(association));
//result.second为false, 说明ObjectAssociationMap表中原来已有该key,不会移动,所以这里进行了swap的操作来交换association的值。
if (!result.second) {
association.swap(result.first->second);
}
} else { //value为nil, 取消关联。看懂了上面这里就很简单了。
//先从associations表中找到disguised对应的ObjectAssociationMap表,又用pair包装后返回。
auto refs_it = associations.find(disguised);
//如果从associations表中找到了disguised对应的ObjectAssociationMap表,就走进去
if (refs_it != associations.end()) {
//从pair中拿到ObjectAssociationMap表
auto &refs = refs_it->second;
//从ObjectAssociationMap表中查找key对应的association,然后把它作为DenseMapIterator的位置指针初始化后返回
auto it = refs.find(key);
//如果找到了就进去
if (it != refs.end()) {
//这里交换值是为了把要擦除的association记录下来,因为下面还要进行releaseHeldValue
association.swap(it->second);
//从ObjectAssociationMap表中擦除association以及其他相应的操作
refs.erase(it);
if (refs.size() == 0) {
//说明没有关联的值了,从associations表中擦除ObjectAssociationMap表
associations.erase(refs_it);
}
}
}
}
}
// release the old value (outside of the lock).
association.releaseHeldValue();
}
typedef DenseMap<const void *, ObjcAssociation> ObjectAssociationMap;
typedef DenseMap<DisguisedPtr<objc_object>, ObjectAssociationMap> AssociationsHashMap;
// class AssociationsManager manages a lock / hash table singleton pair.
class AssociationsManager {
using Storage = ExplicitInitDenseMap<DisguisedPtr<objc_object>, ObjectAssociationMap>;
static Storage _mapStorage; //静态变量
public:
AssociationsManager() { AssociationsManagerLock.lock(); }
~AssociationsManager() { AssociationsManagerLock.unlock(); }
//注意这里的&,返回的是引用
AssociationsHashMap &get() {
return _mapStorage.get();
}
//map_images_nolock中第一次调用时,通过arr_init调用此方法进行_mapStorage初始化
static void init() {
_mapStorage.init();
}
};
下面通过断点打印来帮助理解源码中的内容,可以看到设置的值"one"
先打印了最初的association和associations
(lldb) p association
(objc::ObjcAssociation) $0 = {
_policy = 3
_value = 0x0000000100004038 "one"
}
(lldb) p associations
(objc::AssociationsHashMap) $1 = {
Buckets = 0x0000000000000000
NumEntries = 0
NumTombstones = 0
NumBuckets = 0
}
接着打印了refs_result的一些内容,下面会省略一些类型的参数来方便查看
(lldb) p refs_result
//这里省略了DenseMapIterator的参数内容
(std::pair<DenseMapIterator, bool>) $2 = {
first = {
Ptr = 0x0000000102018aa0
End = 0x0000000102018b00
}
second = true
}
(lldb) p *refs_result.first
(objc::DenseMapIterator) $2 = {
std::__1::pair<DisguisedPtr<objc_object>, objc::DenseMap<const void *, objc::ObjcAssociation, objc::DenseMapValueInfo<objc::ObjcAssociation>, objc::DenseMapInfo<const void *>, objc::detail::DenseMapPair<const void *, objc::ObjcAssociation> > > = {
first = (value = 18446744069408131216)
second = {
Buckets = 0x0000000000000000
NumEntries = 0
NumTombstones = 0
NumBuckets = 0
}
}
}
(lldb) p refs_result.first->second
(objc::DenseMap<const void *, objc::ObjcAssociation, objc::DenseMapValueInfo<objc::ObjcAssociation>, objc::DenseMapInfo<const void *>, objc::detail::DenseMapPair<const void *, objc::ObjcAssociation> >) $3 = {
Buckets = 0x0000000000000000
NumEntries = 0
NumTombstones = 0
NumBuckets = 0
}
(lldb) p result
(std::pair<objc::DenseMapIterator<const void *, objc::ObjcAssociation, objc::DenseMapValueInfo<objc::ObjcAssociation>, objc::DenseMapInfo<const void *>, objc::detail::DenseMapPair<const void *, objc::ObjcAssociation>, false>, bool>) $4 = {
first = {
Ptr = 0x000000010110fdb8
End = 0x000000010110fdd0
}
second = true
}
(lldb) p result.first->second
(objc::ObjcAssociation) $5 = {
_policy = 3
_value = 0x0000000100004038 "one"
}
最后再打印一下association和associations
(lldb) p association
(objc::ObjcAssociation) $6 = {
_policy = 0
_value = nil
}
(lldb) p associations
(objc::AssociationsHashMap) $7 = {
Buckets = 0x000000010110fcf0
NumEntries = 1
NumTombstones = 0
NumBuckets = 4
}
到这里可以得出下面的一张关系图
AssociationsHashMap表是以伪装后的objc_object指针为key,ObjectAssociationMap是以const void *类型的指针为key。
2.2 objc_getAssociatedObject源码分析
id objc_getAssociatedObject(id object, const void *key)
{
return _object_get_associative_reference(object, key);
}
id _object_get_associative_reference(id object, const void *key)
{
//先初始化一个用来接收值的association
ObjcAssociation association{};
{
AssociationsManager manager;
AssociationsHashMap &associations(manager.get());
//用object作为key从associations表中找到对应的ObjectAssociationMap表
AssociationsHashMap::iterator i = associations.find((objc_object *)object);
if (i != associations.end()) {
ObjectAssociationMap &refs = i->second;
//用key在ObjectAssociationMap表中搜索对应的ObjcAssociation
ObjectAssociationMap::iterator j = refs.find(key);
if (j != refs.end()) {
//找到后赋值给association,然后retain
association = j->second;
association.retainReturnedValue();
}
}
}
return association.autoreleaseReturnedValue();
}
2.3 关联对象释放
在对象调用dealloc方法释放时,通过_objc_rootDealloc->rootDealloc->object_dispose->objc_destructInstance
void *objc_destructInstance(id obj)
{
if (obj) {
// Read all of the flags at once for performance.
bool cxx = obj->hasCxxDtor();
bool assoc = obj->hasAssociatedObjects();
// This order is important.
if (cxx) object_cxxDestruct(obj);
//如果有关联对象,移除
if (assoc) _object_remove_assocations(obj);
obj->clearDeallocating();
}
return obj;
}
void _object_remove_assocations(id object)
{
ObjectAssociationMap refs{};
{
AssociationsManager manager;
AssociationsHashMap &associations(manager.get());
AssociationsHashMap::iterator i = associations.find((objc_object *)object);
if (i != associations.end()) {
refs.swap(i->second);
associations.erase(i);
}
}
// release everything (outside of the lock).
for (auto &i: refs) {
i.second.releaseHeldValue();
}
}
从中可以看出关联对象不用手动移除,在对象释放时会自动移除。
总结
- 类扩展是在编译期就已经是类的一部分了。一般用于对外隐藏属性和方法,但并不是真正的私有。
- 关联对象通过manager维护了以伪装后的objc_object指针为key的AssociationsHashMap表和以const void *类型的指针为key的ObjectAssociationMap表。ObjectAssociation就存在ObjectAssociationMap表中。
- 关联对象在对象释放时会自动移除。