Longest Regular Bracket Sequence
This is yet another problem dealing with regular bracket sequences.
We should remind you that a bracket sequence is called regular, if by inserting «+» and «1» into it we can get a correct mathematical expression. For example, sequences «(())()», «()» and «(()(()))» are regular, while «)(», «(()» and «(()))(» are not.
You are given a string of «(» and «)» characters. You are to find its longest substring that is a regular bracket sequence. You are to find the number of such substrings as well.
Input
The first line of the input file contains a non-empty string, consisting of «(» and «)» characters. Its length does not exceed 106.
Output
Print the length of the longest substring that is a regular bracket sequence, and the number of such substrings. If there are no such substrings, write the only line containing “0 1”.
Examples
Input
)((())))(()())
Output
6 2
Input
))(
Output
0 1
题意: 求最长连续合法括号匹配的长度及数量
思路: 偷的 首先是用stack保存每个 ‘(’ 的位置,也就是正常的括号匹配。
dp[i] 表示 i 位置以 ‘)’ 结尾 连续的合法括号匹配的长度。当 str[i] == ‘)’ 时,有
dp[i] = dp[st.top() - 1] + i - st.top() + 1
最后扫一遍 dp 数组求最大长度和数量即可。
Code:
#include<bits/stdc++.h>
#define debug(x) cout << "[" << #x <<": " << (x) <<"]"<< endl
#define pii pair<int,int>
#define clr(a,b) memset((a),b,sizeof(a))
#define rep(i,a,b) for(int i = a;i < b;i ++)
#define pb push_back
#define MP make_pair
#define LL long long
#define ull unsigned LL
#define ls i << 1
#define rs (i << 1) + 1
#define fi first
#define se second
#define ptch putchar
#define CLR(a) while(!(a).empty()) a.pop()
using namespace std;
inline LL read() {
LL s = 0,w = 1;
char ch = getchar();
while(!isdigit(ch)) {
if(ch == '-') w = -1;
ch = getchar();
}
while(isdigit(ch))
s = s * 10 + ch - '0',ch = getchar();
return s * w;
}
inline void write(LL x) {
if(x < 0)
putchar('-'), x = -x;
if(x > 9)
write(x / 10);
putchar(x % 10 + '0');
}
const int maxn = 1e6 + 10;
char str[maxn];
int dp[maxn];
stack<int>st;
int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
while(~scanf("%s",str + 1)){
CLR(st); clr(dp,0);
int n = strlen(str + 1);
for(int i = 1;i <= n;++ i){
if(str[i] == '(')
st.push(i);
else {
if(st.empty()) continue;
int top = st.top(); st.pop();
dp[i] = dp[top - 1] + i - top + 1;
}
}
int maxx = 0,num = 0;
for(int i = 1;i <= n;++ i){
if(dp[i] > maxx){
maxx = dp[i];
num = 1;
}
else if(dp[i] == maxx)
++ num;
}
write(maxx); ptch(' ');
write(maxx == 0 ? 1 : num); ptch('\n');
}
return 0;
}