iven a positive integer n and you can do operations as follow:
- If n is even, replace n with
n/2
. - If n is odd, you can replace n with either
n + 1
orn - 1
.
What is the minimum number of replacements needed for n to become 1?
Example 1:
Input: 8 Output: 3 Explanation: 8 -> 4 -> 2 -> 1
Example 2:
Input: 7 Output: 4 Explanation: 7 -> 8 -> 4 -> 2 -> 1 or 7 -> 6 -> 3 -> 2 -> 1
0000000011 -> n = n - 1
xxxx1xxxx11 -> n = n + 1
xxxxxxxxx01 -> n = n - 1
为什么会xxxx1xxxx11 --> n = n + 1呢?
反证:如果xxxx1xxxx11 -> n = n -1那么n->xxxx1xxxx10,n>>1后,立即又变成了xxxx1xxxxx1,这时候又要进行加减运算,这样会使得中间过程更多,而如果此时 n=n+1,则会变成 xxxx1xxxx00,可以连续进行至少两次>>1的运算。结果肯定比n=n-1的好。
xxxxxxxxx01 -> n = n - 1,同样,如果n=n+1就变成了xxxx1xxxx10,n>>1后,立即又变成了xxxx1xxxxx1,所以不好,此时n=n-1的话,xxxxxxxxx01就变成了 xxxx1xxxx00 ,可以连续进行至少两次>>1的运算。中间过程更加简练。
Runtime:
4 ms
public int integerReplacement(int n) {
if (n == 1) return 0;
if (n == 3) return 2;
if (n == Integer.MAX_VALUE) return 32;
if (n % 2 == 0) return integerReplacement(n / 2) + 1;
return (n& 3) == 3?integerReplacement(n +1) + 1:integerReplacement(n - 1) + 1;
}
不考虑更快的话,这种思路更简单。Runtime: 7 ms
public int integerReplacement(int n) {
if (n == 1) return 0;
if (n == Integer.MAX_VALUE) return 32;
if (n % 2 == 0) return integerReplacement(n / 2) + 1;
return Math.min(integerReplacement(n - 1), integerReplacement(n + 1)) + 1;
}