Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target = 3
, return true
.
思路:矩阵的每一行的最小数据也大于前一行的最大数据,就是任何数据都大于前一行的所有数据。因此可以把矩阵按行顺序展开,数据递增排序,二分查找即可。展开后,第k个位置的数据,在矩阵中的位置为:matrix[k/ n][k % n],n代表矩阵的总列数。时间复杂度为O( log(m*n) )
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix.length == 0) return false;
int m = matrix.length, n = matrix[0].length;
int low = 0, hight = m * n;
while (low < hight) {
int mid = low + (hight - low) / 2;
int vlaue = matrix[mid / n][mid % n];
if (vlaue == target) return true;
else if (vlaue < target) low = mid + 1;
else hight = mid;
}
return false;
}
更简单,更快的做法,参考LeetCode 240的解法,时间复杂度为O(m+n).
public boolean searchMatrix2(int[][] matrix, int target) {
if (matrix.length == 0) return false;
int m = 0, n = matrix[0].length - 1;
while (m < matrix.length && n >= 0) {
int x = matrix[m][n];
if (target == x) return true;
else if (target < x) n--;
else m++;
}
return false;
}