64. Minimum Path Sum

本文介绍了一个算法问题:在一个非负数构成的矩阵中寻找从左上角到右下角的路径,使得路径上的数字之和最小。文章提供了一种递归加动态规划的方法,并附带详细的Python代码实现。

https://leetcode.com/problems/minimum-path-sum/description/

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
class Solution(object):
    def minSum(self, grid, row, col):
        m, n = len(grid), len(grid[0])
        if row == m - 1:
            res = 0
            for i in range(col + 1, n):
                res += grid[row][i]
            return res
        elif col == n - 1:
            res = 0
            for i in range(row + 1, m):
                res += grid[i][col]
            return res
        if self.dp[row][col + 1] < 0:
            self.dp[row][col + 1] = self.minSum(grid, row, col + 1)
        if self.dp[row + 1][col] < 0:
            self.dp[row + 1][col] = self.minSum(grid, row + 1, col)
        return min(grid[row][col + 1] + self.dp[row][col + 1], grid[row + 1][col] + self.dp[row + 1][col])
    def minPathSum(self, grid):
        """
        :type grid: List[List[int]]
        :rtype: int
        """
        m, n = len(grid), len(grid[0])
        self.dp = [[-1] * n for _ in range(m)]
        return grid[0][0] + self.minSum(grid, 0, 0)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值