F Restore the Tree
一棵树有n个叶子,已知叶子间两两的距离,求这棵树的一个构造方案。
我的做法:
(已经被查出反例)
首先对于每个点向外延伸点,每次把距离最近的2个点合并
最后考察其余的距离是否合法
G Unrhymable Rhymes
每次遇到一对取出。
#include<bits/stdc++.h>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int>
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
For(j,m-1) cout<<a[i][j]<<' ';\
cout<<a[i][m]<<endl; \
}
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
int n;
int a[10000],a2[10000];
int c[10000]={};
vector<int> v[5000];
int tcase[10000]={};
int main()
{
freopen("rhymes.in","r",stdin);
freopen("rhymes.out","w",stdout);
int n=read();
For(i,n) a[i]=read(),a2[i]=a[i];
sort(a2+1,a2+1+n);
int m=unique(a2+1,a2+1+n)-a2-1;
For(i,n) a[i]=lower_bound(a2+1,a2+1+m,a[i])-a2;
int t=1,l=0;
vi tmp;
For(i,n) {
if (t!=tcase[a[i]]) tcase[a[i]]=t,c[a[i]]=0,v[a[i]].clear();
c[a[i]]++,v[a[i]].pb(i);
if (c[a[i]]%2==0) {
tmp.pb(v[a[i]][SI(v[a[i]])-2]);
tmp.pb(v[a[i]][SI(v[a[i]])-1]);
++l;
if (l%2==0) ++t;
}
}
printf("%d\n",l/2);
int sz=SI(tmp);sort(ALL(tmp));
if (sz%4!=0) sz-=2;
Rep(i,sz) {
printf("%d",tmp[i]);
if (i%4==3) puts("");else putchar(' ');
}
return 0;
}