Neowise Labs Contest 1 (Codeforces Round 1018, Div. 1 + Div. 2) 题解

A Wonderful Sticks

#include<bits/stdc++.h> 
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
						For(j,m-1) cout<<a[i][j]<<' ';\
						cout<<a[i][m]<<endl; \
						} 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#endif

#define DEBUG
int recur_depth = 0;
#ifdef DEBUG
#define dbg(x) {++recur_depth; auto x_=x; --recur_depth; cerr<<string(recur_depth, '\t')<<"\e[91m"<<__func__<<":"<<__LINE__<<"\t"<<#x<<" = "<<x_<<"\e[39m"<<endl;}
#else
#define dbg(x)
#endif
template<typename Ostream, typename Cont>
typename enable_if<is_same<Ostream,ostream>::value, Ostream&>::type operator<<(Ostream& os,  const Cont& v){
	os<<"[";
	for(auto& x:v){os<<x<<", ";}
	return os<<"]";
}
template<typename Ostream, typename ...Ts>
Ostream& operator<<(Ostream& os,  const pair<Ts...>& p){
	return os<<"{"<<p.first<<", "<<p.second<<"}";
}

typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
	int x=0,f=1; char ch=getchar();
	while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
	while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
	return x*f;
} 
int main()
{
//	freopen("A.in","r",stdin);
//	freopen(".out","w",stdout);
	int T=read();
	while(T--) {
		int n=read();string s;cin>>s;
		int l=1,r=n;
		vi v;
		RepD(i,n-2) {
			if(s[i]=='<') v.pb(l++);else v.pb(r--);
		}
		v.pb(l);
		reverse(ALL(v));
		For(i,n) cout<<v[i-1]<<' ';cout<<endl;
	}
	return 0;
}


B

#include<bits/stdc++.h> 
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
						For(j,m-1) cout<<a[i][j]<<' ';\
						cout<<a[i][m]<<endl; \
						} 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#endif

#define DEBUG
int recur_depth = 0;
#ifdef DEBUG
#define dbg(x) {++recur_depth; auto x_=x; --recur_depth; cerr<<string(recur_depth, '\t')<<"\e[91m"<<__func__<<":"<<__LINE__<<"\t"<<#x<<" = "<<x_<<"\e[39m"<<endl;}
#else
#define dbg(x)
#endif
template<typename Ostream, typename Cont>
typename enable_if<is_same<Ostream,ostream>::value, Ostream&>::type operator<<(Ostream& os,  const Cont& v){
	os<<"[";
	for(auto& x:v){os<<x<<", ";}
	return os<<"]";
}
template<typename Ostream, typename ...Ts>
Ostream& operator<<(Ostream& os,  const pair<Ts...>& p){
	return os<<"{"<<p.first<<", "<<p.second<<"}";
}

typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
	int x=0,f=1; char ch=getchar();
	while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
	while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
	return x*f;
} 
ll l[212345],r[212345];
int main()
{
//	freopen("A.in","r",stdin);
//	freopen(".out","w",stdout);
	int T=read();
	while(T--) {
		int n=read(),k=read();
		ll s2=0;
		For(i,n) l[i]=read(),s2+=l[i];
		For(i,n) r[i]=read(),s2+=r[i];
		
		For(i,n) gmin(l[i],r[i])
		sort(l+1,l+1+n);
		ll s=0;
		For(i,n-(k-1)) s+=l[i];
		cout<<s2-s+1<<endl;
	}
	return 0;
}
 

C Wonderful City

给1个矩阵,第i行加1需要ci代价,第i列需要di代价,每行,每列只能加1次。问最小代价使矩阵不存在相邻元素相同。

每行每列取不取只被上行影响。行列可分离考虑。

#include<bits/stdc++.h> 
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
						For(j,m-1) cout<<a[i][j]<<' ';\
						cout<<a[i][m]<<endl; \
						} 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#endif

#define DEBUG
int recur_depth = 0;
#ifdef DEBUG
#define dbg(x) {++recur_depth; auto x_=x; --recur_depth; cerr<<string(recur_depth, '\t')<<"\e[91m"<<__func__<<":"<<__LINE__<<"\t"<<#x<<" = "<<x_<<"\e[39m"<<endl;}
#else
#define dbg(x)
#endif
template<typename Ostream, typename Cont>
typename enable_if<is_same<Ostream,ostream>::value, Ostream&>::type operator<<(Ostream& os,  const Cont& v){
	os<<"[";
	for(auto& x:v){os<<x<<", ";}
	return os<<"]";
}
template<typename Ostream, typename ...Ts>
Ostream& operator<<(Ostream& os,  const pair<Ts...>& p){
	return os<<"{"<<p.first<<", "<<p.second<<"}";
}

typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
	int x=0,f=1; char ch=getchar();
	while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
	while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
	return x*f;
} 
#define MAXN (1010)
int h[MAXN][MAXN];
bool b[MAXN][10];
ll f[MAXN][2][2],d[MAXN],c[MAXN];
int main()
{
//	freopen("A.in","r",stdin);
//	freopen(".out","w",stdout);
	int T=read();
	while(T--) {
		int n=read();
		For(i,n) For(j,n) h[i][j]=read();
		For(i,n) c[i]=read();
		For(i,n) d[i]=read();
		
		For(i,n) Rep(k,6) b[i][k]=0;
		For(i,n) For(j,n) {
			if(i<n && h[i][j]==h[i+1][j]) b[i][0]=1;
			if(j<n && h[i][j]==h[i][j+1]) b[j][1]=1;
			
			if(i<n && h[i][j]==1+h[i+1][j]) b[i][2]=1;
			if(j<n && h[i][j]==1+h[i][j+1]) b[j][3]=1;
			
			if(i<n && h[i][j]+1==h[i+1][j]) b[i][4]=1;
			if(j<n && h[i][j]+1==h[i][j+1]) b[j][5]=1;
		}
//		For(i,n) {
//			Rep(k,6) cout<<b[i][k]<<' ';cout<<endl;
//		}
//		
		f[1][0][0]=0;f[1][1][0]=c[1],f[1][0][1]=d[1]; f[1][1][1]=c[1]+d[1];
		Fork(i,2,n) {
			Rep(k,2) Rep(l,2){
				f[i][k][l]=-1;
				ll ci=0;if(k==1) ci+=c[i];if(l==1) ci+=d[i];
				
				Rep(j,2) Rep(t,2) if(f[i-1][j][t]!=-1){
					if(b[i-1][0]) {
						if(j==k ) continue;
					}
					if(b[i-1][1]) {
						if(t==l) continue;
					}
					if(b[i-1][2]) {
						if(k==1 && j!=1) continue;
					}
					if(b[i-1][3]) {
						if(l==1 && t!=1) continue;
					}
					if(b[i-1][4]) {
						if(j==1 && k!=1) continue;
					}
					if(b[i-1][5]) {
						if(t==1 && l!=1) continue;
					}
					if(f[i][k][l]==-1) f[i][k][l]=f[i-1][j][t]+ci;else f[i][k][l]=min(f[i][k][l],f[i-1][j][t]+ci);
				}
			}
		}
		For(i,n) {
			Rep(k,2) Rep(l,2){
				dbg(f[i][k][l])
			}
		}
		ll t=-1;
		Rep(k,2)Rep(l,2) if(f[n][k][l]!=-1) {
			if(t==-1) t=f[n][k][l];else t=min(t,f[n][k][l]);
		}
		cout<<t<<endl;
		
	}
	return 0;
}


D Wonderful Lightbulbs

You are the proud owner of an infinitely large grid of lightbulbs, represented by a Cartesian coordinate system. Initially, all of the lightbulbs are turned off, except for one lightbulb, where you buried your proudest treasure.

In order to hide your treasure’s position, you perform the following operation an arbitrary number of times (possibly zero):

  • Choose two integer numbers x x x and y y y, and switch the state of the 4 4 4 lightbulbs at ( x , y ) (x, y) (x,y), ( x , y + 1 ) (x, y + 1) (x,y+1), ( x + 1 , y − 1 ) (x + 1, y - 1) (x+1,y1), and ( x + 1 , y ) (x + 1, y) (x+1,y). In other words, for each lightbulb, turn it on if it was off, and turn it off if it was on. Note that there are no constraints on x x x and y y y.

In the end, there are n n n lightbulbs turned on at coordinates ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) (x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) (x1,y1),(x2,y2),,(xn,yn). Unfortunately, you have already forgotten where you buried your treasure, so now you have to figure out one possible position of the treasure. Good luck!

性质1:x坐标为奇数的一定是答案。
性质2:可以把2个x坐标相同的数向左上方平移。移到同一x后,只剩下1个数

#include<bits/stdc++.h> 
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
						For(j,m-1) cout<<a[i][j]<<' ';\
						cout<<a[i][m]<<endl; \
						} 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
	int x=0,f=1; char ch=getchar();
	while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
	while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
	return x*f;
} 
ll x[212345],y[212345];
int main()
{
//	freopen("D.in","r",stdin);
//	freopen(".out","w",stdout);
	int T=read();
	while(T--) {
		int n=read();
		vector<pair<ll,ll> > v;
		ll p=0;
		For(i,n) {
			x[i]=read(),y[i]=read();
			p^=x[i];
		}
		For(i,n) {
			y[i]+=x[i]-p;
			x[i]=p;
		}
		ll q=0;
		For(i,n) q^=y[i];
		cout<<p<<' '<<q<<endl;
	} 
	return 0;
}


E Wonderful Teddy Bears

#include<bits/stdc++.h> 
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
						For(j,m-1) cout<<a[i][j]<<' ';\
						cout<<a[i][m]<<endl; \
						} 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
	int x=0,f=1; char ch=getchar();
	while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
	while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
	return x*f;
} 
int main()
{
//	freopen("E.in","r",stdin);
//	freopen(".out","w",stdout);
	
	int T=read();
	while(T--) {
		int n=read();
		string s;cin>>s;
		ll t=0,b=0,c1=0,c2=0;
		RepD(i,n-1) {
			if(s[i]=='B') ++b;
			else {
				t+=b;
				if(i%2==1) ++c1;else ++c2;
			}
		}
		ll c=abs(c1-c2);
		cout<<c/2+(t-c/2+1)/2<<endl;
		
	} 
	
	return 0;
}


F Wonderful Impostors

G Wonderful Guessing Game

平衡三进制
看其他人的代码才发现有这么个东西

#include<bits/stdc++.h> 
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
						For(j,m-1) cout<<a[i][j]<<' ';\
						cout<<a[i][m]<<endl; \
						} 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
	int x=0,f=1; char ch=getchar();
	while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
	while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
	return x*f;
} 
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#endif

#define DEBUG
int recur_depth = 0;
#ifdef DEBUG
#define dbg(x) {++recur_depth; auto x_=x; --recur_depth; cerr<<string(recur_depth, '\t')<<"\e[91m"<<__func__<<":"<<__LINE__<<"\t"<<#x<<" = "<<x_<<"\e[39m"<<endl;}
#else
#define dbg(x)
#endif
template<typename Ostream, typename Cont>
typename enable_if<is_same<Ostream,ostream>::value, Ostream&>::type operator<<(Ostream& os,  const Cont& v){
	os<<"[";
	for(auto& x:v){os<<x<<", ";}
	return os<<"]";
}
template<typename Ostream, typename ...Ts>
Ostream& operator<<(Ostream& os,  const pair<Ts...>& p){
	return os<<"{"<<p.first<<", "<<p.second<<"}";
}
vi getkth(int p) {
	int f=1;
	if(p<0) p=-p,f=-1;
	vi v;
	while(p) {
		if(p%3<=1) v.pb(p%3*f),p/=3;
		else {
			v.pb(-1*f);p/=3,++p;
		}
	}
//	dbg(v);
	return v;
}
int main()
{
//	freopen("E.in","r",stdin);
//	freopen(".out","w",stdout);
	int T=read();
	cin.tie(0);
	while(T--) {
		int n=read();
		int p3=3,k=1;while(p3<n) p3*=3,++k;
		vector<vi > a;
		if(n%2) {
			a.pb(getkth(0));
			a[SI(a)-1].resize(k);
			a[SI(a)-1].pb(0);
		}
		For(i,n/2) {
			a.pb(getkth(i));
			a[SI(a)-1].resize(k);
			int t;
			t=0;for(auto p:a.back()) t+=p;
			t=(t%3+3)%3;if(t==2) t-=3;
			a[SI(a)-1].pb(t);
			a.pb(getkth(-i));
			a[SI(a)-1].resize(k);
			t=0;for(auto p:a.back()) t+=p;
			t=(t%3+3)%3;if(t==2) t-=3;
			a[SI(a)-1].pb(t);
		}
		cout<<k+1<<endl;
		Rep(i,k+1) {
			int tot=0;
			Rep(j,n) tot+=a[j][i]!=0;
			cout<<tot;
			Rep(j,n) if(a[j][i]==-1) {
				cout<<' '<<j+1;
			}
			Rep(j,n) if(a[j][i]==1) {
				cout<<' '<<j+1;
			}
			cout<<endl;
		}
		fflush(stdout);
		string s;
		cin>>s;
		Rep(j,n) {
			bool fl=1;
			Rep(i,k+1)
				if(s[i]!='?') {
					if(s[i]=='L' && a[j][i]!=-1 || s[i]=='R' && a[j][i]!=1 || s[i]=='N' && a[j][i]!=0 ) {
						fl=0;break;
					}
				}
			if(fl) {
				cout<<j+1<<endl;
				break;
			}
		}
	}
	return 0;
}


根据原作 https://pan.quark.cn/s/0ed355622f0f 的源码改编 野火IM解决方案 野火IM是专业级即时通讯和实时音视频整体解决方案,由北京野火无限网络科技有限公司维护和支持。 主要特性有:私有部署安全可靠,性能强大,功能齐全,全平台支持,开源率高,部署运维简单,二次开发友好,方便与第三方系统对接或者嵌入现有系统中。 详细情况请参考在线文档。 主要包括一下项目: 野火IM Vue Electron Demo,演示如何将野火IM的能力集成到Vue Electron项目。 前置说明 本项目所使用的是需要付费的,价格请参考费用详情 支持试用,具体请看试用说明 本项目默认只能连接到官方服务,购买或申请试用之后,替换,即可连到自行部署的服务 分支说明 :基于开发,是未来的开发重心 :基于开发,进入维护模式,不再开发新功能,鉴于已经终止支持且不再维护,建议客户升级到版本 环境依赖 mac系统 最新版本的Xcode nodejs v18.19.0 npm v10.2.3 python 2.7.x git npm install -g node-gyp@8.3.0 windows系统 nodejs v18.19.0 python 2.7.x git npm 6.14.15 npm install --global --vs2019 --production windows-build-tools 本步安装windows开发环境的安装内容较多,如果网络情况不好可能需要等较长时间,选择早上网络较好时安装是个好的选择 或参考手动安装 windows-build-tools进行安装 npm install -g node-gyp@8.3.0 linux系统 nodej...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值