Neowise Labs Contest 1 (Codeforces Round 1018, Div. 1 + Div. 2) 题解

A Wonderful Sticks

#include<bits/stdc++.h> 
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
						For(j,m-1) cout<<a[i][j]<<' ';\
						cout<<a[i][m]<<endl; \
						} 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#endif

#define DEBUG
int recur_depth = 0;
#ifdef DEBUG
#define dbg(x) {++recur_depth; auto x_=x; --recur_depth; cerr<<string(recur_depth, '\t')<<"\e[91m"<<__func__<<":"<<__LINE__<<"\t"<<#x<<" = "<<x_<<"\e[39m"<<endl;}
#else
#define dbg(x)
#endif
template<typename Ostream, typename Cont>
typename enable_if<is_same<Ostream,ostream>::value, Ostream&>::type operator<<(Ostream& os,  const Cont& v){
	os<<"[";
	for(auto& x:v){os<<x<<", ";}
	return os<<"]";
}
template<typename Ostream, typename ...Ts>
Ostream& operator<<(Ostream& os,  const pair<Ts...>& p){
	return os<<"{"<<p.first<<", "<<p.second<<"}";
}

typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
	int x=0,f=1; char ch=getchar();
	while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
	while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
	return x*f;
} 
int main()
{
//	freopen("A.in","r",stdin);
//	freopen(".out","w",stdout);
	int T=read();
	while(T--) {
		int n=read();string s;cin>>s;
		int l=1,r=n;
		vi v;
		RepD(i,n-2) {
			if(s[i]=='<') v.pb(l++);else v.pb(r--);
		}
		v.pb(l);
		reverse(ALL(v));
		For(i,n) cout<<v[i-1]<<' ';cout<<endl;
	}
	return 0;
}


B

#include<bits/stdc++.h> 
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
						For(j,m-1) cout<<a[i][j]<<' ';\
						cout<<a[i][m]<<endl; \
						} 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#endif

#define DEBUG
int recur_depth = 0;
#ifdef DEBUG
#define dbg(x) {++recur_depth; auto x_=x; --recur_depth; cerr<<string(recur_depth, '\t')<<"\e[91m"<<__func__<<":"<<__LINE__<<"\t"<<#x<<" = "<<x_<<"\e[39m"<<endl;}
#else
#define dbg(x)
#endif
template<typename Ostream, typename Cont>
typename enable_if<is_same<Ostream,ostream>::value, Ostream&>::type operator<<(Ostream& os,  const Cont& v){
	os<<"[";
	for(auto& x:v){os<<x<<", ";}
	return os<<"]";
}
template<typename Ostream, typename ...Ts>
Ostream& operator<<(Ostream& os,  const pair<Ts...>& p){
	return os<<"{"<<p.first<<", "<<p.second<<"}";
}

typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
	int x=0,f=1; char ch=getchar();
	while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
	while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
	return x*f;
} 
ll l[212345],r[212345];
int main()
{
//	freopen("A.in","r",stdin);
//	freopen(".out","w",stdout);
	int T=read();
	while(T--) {
		int n=read(),k=read();
		ll s2=0;
		For(i,n) l[i]=read(),s2+=l[i];
		For(i,n) r[i]=read(),s2+=r[i];
		
		For(i,n) gmin(l[i],r[i])
		sort(l+1,l+1+n);
		ll s=0;
		For(i,n-(k-1)) s+=l[i];
		cout<<s2-s+1<<endl;
	}
	return 0;
}
 

C Wonderful City

给1个矩阵,第i行加1需要ci代价,第i列需要di代价,每行,每列只能加1次。问最小代价使矩阵不存在相邻元素相同。

每行每列取不取只被上行影响。行列可分离考虑。

#include<bits/stdc++.h> 
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
						For(j,m-1) cout<<a[i][j]<<' ';\
						cout<<a[i][m]<<endl; \
						} 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#endif

#define DEBUG
int recur_depth = 0;
#ifdef DEBUG
#define dbg(x) {++recur_depth; auto x_=x; --recur_depth; cerr<<string(recur_depth, '\t')<<"\e[91m"<<__func__<<":"<<__LINE__<<"\t"<<#x<<" = "<<x_<<"\e[39m"<<endl;}
#else
#define dbg(x)
#endif
template<typename Ostream, typename Cont>
typename enable_if<is_same<Ostream,ostream>::value, Ostream&>::type operator<<(Ostream& os,  const Cont& v){
	os<<"[";
	for(auto& x:v){os<<x<<", ";}
	return os<<"]";
}
template<typename Ostream, typename ...Ts>
Ostream& operator<<(Ostream& os,  const pair<Ts...>& p){
	return os<<"{"<<p.first<<", "<<p.second<<"}";
}

typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
	int x=0,f=1; char ch=getchar();
	while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
	while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
	return x*f;
} 
#define MAXN (1010)
int h[MAXN][MAXN];
bool b[MAXN][10];
ll f[MAXN][2][2],d[MAXN],c[MAXN];
int main()
{
//	freopen("A.in","r",stdin);
//	freopen(".out","w",stdout);
	int T=read();
	while(T--) {
		int n=read();
		For(i,n) For(j,n) h[i][j]=read();
		For(i,n) c[i]=read();
		For(i,n) d[i]=read();
		
		For(i,n) Rep(k,6) b[i][k]=0;
		For(i,n) For(j,n) {
			if(i<n && h[i][j]==h[i+1][j]) b[i][0]=1;
			if(j<n && h[i][j]==h[i][j+1]) b[j][1]=1;
			
			if(i<n && h[i][j]==1+h[i+1][j]) b[i][2]=1;
			if(j<n && h[i][j]==1+h[i][j+1]) b[j][3]=1;
			
			if(i<n && h[i][j]+1==h[i+1][j]) b[i][4]=1;
			if(j<n && h[i][j]+1==h[i][j+1]) b[j][5]=1;
		}
//		For(i,n) {
//			Rep(k,6) cout<<b[i][k]<<' ';cout<<endl;
//		}
//		
		f[1][0][0]=0;f[1][1][0]=c[1],f[1][0][1]=d[1]; f[1][1][1]=c[1]+d[1];
		Fork(i,2,n) {
			Rep(k,2) Rep(l,2){
				f[i][k][l]=-1;
				ll ci=0;if(k==1) ci+=c[i];if(l==1) ci+=d[i];
				
				Rep(j,2) Rep(t,2) if(f[i-1][j][t]!=-1){
					if(b[i-1][0]) {
						if(j==k ) continue;
					}
					if(b[i-1][1]) {
						if(t==l) continue;
					}
					if(b[i-1][2]) {
						if(k==1 && j!=1) continue;
					}
					if(b[i-1][3]) {
						if(l==1 && t!=1) continue;
					}
					if(b[i-1][4]) {
						if(j==1 && k!=1) continue;
					}
					if(b[i-1][5]) {
						if(t==1 && l!=1) continue;
					}
					if(f[i][k][l]==-1) f[i][k][l]=f[i-1][j][t]+ci;else f[i][k][l]=min(f[i][k][l],f[i-1][j][t]+ci);
				}
			}
		}
		For(i,n) {
			Rep(k,2) Rep(l,2){
				dbg(f[i][k][l])
			}
		}
		ll t=-1;
		Rep(k,2)Rep(l,2) if(f[n][k][l]!=-1) {
			if(t==-1) t=f[n][k][l];else t=min(t,f[n][k][l]);
		}
		cout<<t<<endl;
		
	}
	return 0;
}


D Wonderful Lightbulbs

You are the proud owner of an infinitely large grid of lightbulbs, represented by a Cartesian coordinate system. Initially, all of the lightbulbs are turned off, except for one lightbulb, where you buried your proudest treasure.

In order to hide your treasure’s position, you perform the following operation an arbitrary number of times (possibly zero):

  • Choose two integer numbers x x x and y y y, and switch the state of the 4 4 4 lightbulbs at ( x , y ) (x, y) (x,y), ( x , y + 1 ) (x, y + 1) (x,y+1), ( x + 1 , y − 1 ) (x + 1, y - 1) (x+1,y1), and ( x + 1 , y ) (x + 1, y) (x+1,y). In other words, for each lightbulb, turn it on if it was off, and turn it off if it was on. Note that there are no constraints on x x x and y y y.

In the end, there are n n n lightbulbs turned on at coordinates ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) (x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) (x1,y1),(x2,y2),,(xn,yn). Unfortunately, you have already forgotten where you buried your treasure, so now you have to figure out one possible position of the treasure. Good luck!

性质1:x坐标为奇数的一定是答案。
性质2:可以把2个x坐标相同的数向左上方平移。移到同一x后,只剩下1个数

#include<bits/stdc++.h> 
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
						For(j,m-1) cout<<a[i][j]<<' ';\
						cout<<a[i][m]<<endl; \
						} 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
	int x=0,f=1; char ch=getchar();
	while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
	while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
	return x*f;
} 
ll x[212345],y[212345];
int main()
{
//	freopen("D.in","r",stdin);
//	freopen(".out","w",stdout);
	int T=read();
	while(T--) {
		int n=read();
		vector<pair<ll,ll> > v;
		ll p=0;
		For(i,n) {
			x[i]=read(),y[i]=read();
			p^=x[i];
		}
		For(i,n) {
			y[i]+=x[i]-p;
			x[i]=p;
		}
		ll q=0;
		For(i,n) q^=y[i];
		cout<<p<<' '<<q<<endl;
	} 
	return 0;
}


E Wonderful Teddy Bears

#include<bits/stdc++.h> 
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
						For(j,m-1) cout<<a[i][j]<<' ';\
						cout<<a[i][m]<<endl; \
						} 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
	int x=0,f=1; char ch=getchar();
	while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
	while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
	return x*f;
} 
int main()
{
//	freopen("E.in","r",stdin);
//	freopen(".out","w",stdout);
	
	int T=read();
	while(T--) {
		int n=read();
		string s;cin>>s;
		ll t=0,b=0,c1=0,c2=0;
		RepD(i,n-1) {
			if(s[i]=='B') ++b;
			else {
				t+=b;
				if(i%2==1) ++c1;else ++c2;
			}
		}
		ll c=abs(c1-c2);
		cout<<c/2+(t-c/2+1)/2<<endl;
		
	} 
	
	return 0;
}


F Wonderful Impostors

G Wonderful Guessing Game

平衡三进制
看其他人的代码才发现有这么个东西

#include<bits/stdc++.h> 
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
						For(j,m-1) cout<<a[i][j]<<' ';\
						cout<<a[i][m]<<endl; \
						} 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
	int x=0,f=1; char ch=getchar();
	while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
	while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
	return x*f;
} 
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#endif

#define DEBUG
int recur_depth = 0;
#ifdef DEBUG
#define dbg(x) {++recur_depth; auto x_=x; --recur_depth; cerr<<string(recur_depth, '\t')<<"\e[91m"<<__func__<<":"<<__LINE__<<"\t"<<#x<<" = "<<x_<<"\e[39m"<<endl;}
#else
#define dbg(x)
#endif
template<typename Ostream, typename Cont>
typename enable_if<is_same<Ostream,ostream>::value, Ostream&>::type operator<<(Ostream& os,  const Cont& v){
	os<<"[";
	for(auto& x:v){os<<x<<", ";}
	return os<<"]";
}
template<typename Ostream, typename ...Ts>
Ostream& operator<<(Ostream& os,  const pair<Ts...>& p){
	return os<<"{"<<p.first<<", "<<p.second<<"}";
}
vi getkth(int p) {
	int f=1;
	if(p<0) p=-p,f=-1;
	vi v;
	while(p) {
		if(p%3<=1) v.pb(p%3*f),p/=3;
		else {
			v.pb(-1*f);p/=3,++p;
		}
	}
//	dbg(v);
	return v;
}
int main()
{
//	freopen("E.in","r",stdin);
//	freopen(".out","w",stdout);
	int T=read();
	cin.tie(0);
	while(T--) {
		int n=read();
		int p3=3,k=1;while(p3<n) p3*=3,++k;
		vector<vi > a;
		if(n%2) {
			a.pb(getkth(0));
			a[SI(a)-1].resize(k);
			a[SI(a)-1].pb(0);
		}
		For(i,n/2) {
			a.pb(getkth(i));
			a[SI(a)-1].resize(k);
			int t;
			t=0;for(auto p:a.back()) t+=p;
			t=(t%3+3)%3;if(t==2) t-=3;
			a[SI(a)-1].pb(t);
			a.pb(getkth(-i));
			a[SI(a)-1].resize(k);
			t=0;for(auto p:a.back()) t+=p;
			t=(t%3+3)%3;if(t==2) t-=3;
			a[SI(a)-1].pb(t);
		}
		cout<<k+1<<endl;
		Rep(i,k+1) {
			int tot=0;
			Rep(j,n) tot+=a[j][i]!=0;
			cout<<tot;
			Rep(j,n) if(a[j][i]==-1) {
				cout<<' '<<j+1;
			}
			Rep(j,n) if(a[j][i]==1) {
				cout<<' '<<j+1;
			}
			cout<<endl;
		}
		fflush(stdout);
		string s;
		cin>>s;
		Rep(j,n) {
			bool fl=1;
			Rep(i,k+1)
				if(s[i]!='?') {
					if(s[i]=='L' && a[j][i]!=-1 || s[i]=='R' && a[j][i]!=1 || s[i]=='N' && a[j][i]!=0 ) {
						fl=0;break;
					}
				}
			if(fl) {
				cout<<j+1<<endl;
				break;
			}
		}
	}
	return 0;
}


源码地址: https://pan.quark.cn/s/d1f41682e390 miyoubiAuto 米游社每日米游币自动化Python脚本(务必使用Python3) 8更新:更换cookie的获取地址 注意:禁止在B站、贴吧、或各大论坛大肆传播! 作者已退游,项目不维护了。 如果有能力的可以pr修复。 小引一波 推荐关注几个非常可爱有趣的女孩! 欢迎B站搜索: @嘉然今天吃什么 @向晚大魔王 @乃琳Queen @贝拉kira 第三方库 食用方法 下载源码 在Global.py中设置米游社Cookie 运行myb.py 本地第一次运行时会自动生产一个文件储存cookie,请勿删除 当前仅支持单个账号! 获取Cookie方法 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 按刷新页面,按下图复制 Cookie: How to get mys cookie 当触发时,可尝试按关闭,然后再次刷新页面,最后复制 Cookie。 也可以使用另一种方法: 复制代码 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 控制台粘贴代码并运行,获得类似的输出信息 部分即为所需复制的 Cookie,点击确定复制 部署方法--腾讯云函数版(推荐! ) 下载项目源码和压缩包 进入项目文件夹打开命令行执行以下命令 xxxxxxx为通过上面方式或取得米游社cookie 一定要用双引号包裹!! 例如: png 复制返回内容(包括括号) 例如: QQ截图20210505031552.png 登录腾讯云函数官网 选择函数服务-新建-自定义创建 函数名称随意-地区随意-运行环境Python3....
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值