题意
题解
增加的值
c
≥
0
c\geq 0
c≥0,需要讨论
x
i
+
c
x_i+c
xi+c 与
y
i
+
c
y_i+c
yi+c 的情况。仅讨论第一种。
min
c
,
k
∑
i
=
0
n
−
1
(
x
i
+
c
−
y
i
+
k
m
o
d
n
)
2
\min\limits_{c,k}\sum\limits_{i=0}^{n-1} (x_i + c - y_{i+k \mod n})^2
c,kmini=0∑n−1(xi+c−yi+kmodn)2
将式子拆开得到
min
c
,
k
{
∑
i
=
0
n
−
1
(
x
i
2
+
y
i
2
)
+
∑
i
=
0
n
−
1
[
c
2
+
2
c
(
x
i
−
y
i
)
]
−
2
∑
i
=
0
n
−
1
x
i
y
i
+
k
m
o
d
n
}
\min\limits_{c,k}\Big\{\sum\limits_{i=0}^{n-1} (x_i^2+ y_i^2) + \sum\limits_{i=0}^{n-1}[c^2 + 2c(x_i - y_i)] - 2\sum\limits_{i=0}^{n-1}x_iy_{i+k \mod n}\Big\}
c,kmin{i=0∑n−1(xi2+yi2)+i=0∑n−1[c2+2c(xi−yi)]−2i=0∑n−1xiyi+kmodn} 后两项是独立的,倒数第二项可以通过求一元二次函数极值得到,最后一项做循环卷积后枚举
k
k
k 即可。总时间复杂度
O
(
n
log
n
)
O(n\log n)
O(nlogn)。
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
constexpr ll MOD = 998244353, PRT = 3;
ll qpow(ll x, ll n)
{
ll res = 1;
while (n > 0)
{
if (n & 1)
res = res * x % MOD;
x = x * x % MOD, n >>= 1;
}
return res;
}
vector<int> rev;
struct Poly : vector<ll>
{
Poly() {}
Poly(int n) : vector<ll>(n) {}
Poly(const initializer_list<ll> &list) : vector<ll>(list) {}
void fft(int n, bool inverse)
{
if ((int)rev.size() != n)
{
rev.resize(n);
for (int i = 0; i < n; ++i)
rev[i] = rev[i >> 1] >> 1 | (i & 1 ? n >> 1 : 0);
}
resize(n);
for (int i = 0; i < n; ++i)
if (i < rev[i])
std::swap(at(i), at(rev[i]));
for (int m = 1; m < n; m <<= 1)
{
int m2 = m << 1;
ll _w = qpow(inverse ? qpow(PRT, MOD - 2) : PRT, (MOD - 1) / m2);
for (int i = 0; i < n; i += m2)
for (int w = 1, j = 0; j < m; ++j, w = w * _w % MOD)
{
ll &x = at(i + j), &y = at(i + j + m), t = w * y % MOD;
y = x - t;
if (y < 0)
y += MOD;
x += t;
if (x >= MOD)
x -= MOD;
}
}
}
void dft(int n) { fft(n, 0); };
void idft(int n)
{
fft(n, 1);
for (int i = 0, inv = qpow(n, MOD - 2); i < n; ++i)
at(i) = at(i) * inv % MOD;
}
Poly operator*(const Poly &p) const
{
auto a = *this, b = p;
int k = 1, n = a.size() + b.size() - 1;
while (k < n)
k <<= 1;
a.dft(k), b.dft(k);
for (int i = 0; i < k; ++i)
a[i] = a[i] * b[i] % MOD;
a.idft(k);
a.resize(n);
return a;
}
};
constexpr int MAXN = 5E4 + 5;
int N, M;
int A[MAXN], B[MAXN];
int main()
{
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> N >> M;
for (int i = 0; i < N; ++i)
cin >> A[i];
for (int i = 0; i < N; ++i)
cin >> B[i];
ll sa2 = 0, sb2 = 0;
ll sa = 0, sb = 0;
for (int i = 0; i < N; ++i)
sa += A[i], sa2 += A[i] * A[i];
for (int i = 0; i < N; ++i)
sb += B[i], sb2 += B[i] * B[i];
Poly f(N), g(N);
for (int i = 0; i < N; ++i)
f[i] = A[i], g[i] = B[i];
reverse(f.begin(), f.end());
f = f * g;
reverse(f.begin(), f.end());
ll conv = 0;
f.resize(N * 2);
for (int i = 0; i < N; ++i)
conv = max(conv, f[i] + f[N + i]);
ll res = sa2 + sb2 - 2 * conv;
ll c = max((ll)(-(sa - sb) / N), 0ll);
ll sc = 0;
for (ll _c = c - 1; _c <= c + 1; ++_c)
sc = min(sc, N * _c * _c + 2 * _c * (sa - sb));
c = max((ll)((sa - sb) / N), 0ll);
for (ll _c = c - 1; _c <= c + 1; ++_c)
sc = min(sc, N * _c * _c + 2 * _c * (sa - sb));
res += sc;
cout << res << '\n';
return 0;
}