hdu 1114 Piggy-Bank(DP背包)

本文介绍了一种解决特定硬币问题的方法,通过计算不同硬币组合达到预设重量的最小价值,采用动态规划中的背包问题算法实现解决方案。

Piggy-Bank

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6244    Accepted Submission(s): 3137


Problem Description
Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!


 

Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams.


 

Output
Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.".


 

Sample Input
  
3 10 110 2 1 1 30 50 10 110 2 1 1 50 30 1 6 2 10 3 20 4


 

Sample Output
  
The minimum amount of money in the piggy-bank is 60. The minimum amount of money in the piggy-bank is 100. This is impossible.


 

Source


 

Recommend
Eddy

 

思路:简单的背包问题,f[x][y]表示前x个不同硬币能达到重量y的最小值。

        原先还以为是多重背包,还用2进制优化140MS过了,后来发现2了。

        只是个普通背包就行了,改了62MS过了。貌似也没差太多。2进制优化真的很强大、

一次AC代码:

#include<iostream>
#include<cstring>
using namespace std;
const int mm=100009;
const int oo=2e9;
int f[mm];
int cas,n;
int main()
{
  while(cin>>cas)
  {
    while(cas--)
    {
      f[0]=0;
      int a,b,w;
      cin>>a>>b;w=b-a;
      for(int i=1;i<=w;i++)f[i]=oo;
      cin>>n;
      while(n--)
      {
        cin>>a>>b;
        int z=w/b;
        for(int k=1;k<=z;k*=2)
        {
          for(int j=0;j<=w-k*b;j++)
          {
          f[j+k*b]=f[j+k*b]<f[j]+k*a?f[j+k*b]:f[j]+k*a;
          }
          z-=k;
        }
        if(z)
        {
          for(int j=0;j<=w-z*b;j++)
          {
          f[j+z*b]=f[j+z*b]<f[j]+z*a?f[j+z*b]:f[j]+z*a;
          }
        }
      }
      if(f[w]==oo)cout<<"This is impossible.\n";
      else cout<<"The minimum amount of money in the piggy-bank is "<<f[w]<<".\n";

    }
  }
}


二次AC代码:

#include<iostream>
#include<cstring>
using namespace std;
const int mm=100009;
const int oo=2e9;
int f[mm];
int cas,n;
int main()
{
  while(cin>>cas)
  {
    while(cas--)
    {
      f[0]=0;
      int a,b,w;
      cin>>a>>b;w=b-a;
      for(int i=1;i<=w;i++)f[i]=oo;
      cin>>n;
      while(n--)
      {
        cin>>a>>b;
        for(int j=0;j<=w-b;j++)
          f[j+b]=f[j+b]<f[j]+a?f[j+b]:f[j]+a;
        /*int z=w/b;
        for(int k=1;k<=z;k*=2)
        {
          for(int j=0;j<=w-k*b;j++)
          {
          f[j+k*b]=f[j+k*b]<f[j]+k*a?f[j+k*b]:f[j]+k*a;
          }
          z-=k;
        }
        if(z)
        {
          for(int j=0;j<=w-z*b;j++)
          {
          f[j+z*b]=f[j+z*b]<f[j]+z*a?f[j+z*b]:f[j]+z*a;
          }
        }*/
      }
      if(f[w]==oo)cout<<"This is impossible.\n";
      else cout<<"The minimum amount of money in the piggy-bank is "<<f[w]<<".\n";

    }
  }
}


 

 

【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值