划分数据2

本文详细介绍了如何使用PyTorch对CIFAR-10数据集进行分组并预处理,包括数据加载、标签筛选及归一化操作,为后续深度学习模型训练奠定基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import math
import numpy as np
import torch
from torch import nn
import matplotlib.pyplot as plt
import torchvision.datasets as datasets
from torch.utils import data
from torchvision import transforms
from torch.utils.data import Dataset
import torchvision

train_data=datasets.CIFAR10(root="../data", train=True, transform=transforms.ToTensor(), download=True)
test_data=datasets.CIFAR10(root="../data", train=False, transform=transforms.ToTensor(), download=True)

t0=[ i for i, x in enumerate(train_data.targets) if x == 0]
t1=[ i for i, x in enumerate(train_data.targets) if x == 1]
t2=[ i for i, x in enumerate(train_data.targets) if x == 2]
t3=[ i for i, x in enumerate(train_data.targets) if x == 3]
t4=[ i for i, x in enumerate(train_data.targets) if x == 4]
t5=[ i for i, x in enumerate(train_data.targets) if x == 5]
t6=[ i for i, x in enumerate(train_data.targets) if x == 6]
t7=[ i for i, x in enumerate(train_data.targets) if x == 7]
t8=[ i for i, x in enumerate(train_data.targets) if x == 8]
t9=[ i for i, x in enumerate(train_data.targets) if x == 9]

label0=[]
for i in t0:
    label0.append(train_data.targets[i])
label1=[]
for i in t1:
    label1.append(train_data.targets[i])
label2=[]
for i in t2:
    label2.append(train_data.targets[i])
label3=[]
for i in t3:
    label3.append(train_data.targets[i])
label4=[]
for i in t4:
    label4.append(train_data.targets[i])
label5=[]
for i in t5:
    label5.append(train_data.targets[i])
label6=[]
for i in t6:
    label6.append(train_data.targets[i])
label7=[]
for i in t7:
    label7.append(train_data.targets[i])
label8=[]
for i in t8:
    label8.append(train_data.targets[i])
label9=[]
for i in t9:
    label9.append(train_data.targets[i])

data0=np.array([])
data1=np.array([])
data2=np.array([])
data3=np.array([])
data4=np.array([])
data5=np.array([])
data6=np.array([])
data7=np.array([])
data8=np.array([])
data9=np.array([])
for i in range(len(train_data.data)):
    if i in t0:
        data0=np.append(data0,train_data.data[i])
    elif i in t1:
        data1=np.append(data1,train_data.data[i])
    elif i in t2:
        data2=np.append(data2,train_data.data[i])
    elif i in t3:
        data3=np.append(data3,train_data.data[i])
    elif i in t4:
        data4=np.append(data4,train_data.data[i])
    elif i in t5:
        data5=np.append(data5,train_data.data[i])
    elif i in t6:
        data6=np.append(data6,train_data.data[i])
    elif i in t7:
        data7=np.append(data7,train_data.data[i])
    elif i in t8:
        data8=np.append(data8,train_data.data[i])
    elif i in t9:
        data9=np.append(data9,train_data.data[i])

data0=np.transpose((data0),(0,3,1,2))
data1=np.transpose((data1),(0,3,1,2))
data2=np.transpose((data2),(0,3,1,2))
data3=np.transpose((data3),(0,3,1,2))
data4=np.transpose((data4),(0,3,1,2))
data5=np.transpose((data5),(0,3,1,2))
data6=np.transpose((data6),(0,3,1,2))
data7=np.transpose((data7),(0,3,1,2))
data8=np.transpose((data8),(0,3,1,2))
data9=np.transpose((data9),(0,3,1,2))

data0= torch.tensor((data0 - np.min(data0)) / (np.max(data0) - np.min(data0)))
data1= torch.tensor((data1 - np.min(data1)) / (np.max(data1) - np.min(data1)))
data2= torch.tensor((data2 - np.min(data2)) / (np.max(data2) - np.min(data2)))
data3= torch.tensor((data3 - np.min(data3)) / (np.max(data3) - np.min(data3)))
data4= torch.tensor((data4 - np.min(data4)) / (np.max(data4) - np.min(data4)))
data5= torch.tensor((data5 - np.min(data5)) / (np.max(data5) - np.min(data5)))
data6= torch.tensor((data6 - np.min(data6)) / (np.max(data6) - np.min(data6)))
data7= torch.tensor((data7 - np.min(data7)) / (np.max(data7) - np.min(data7)))
data8= torch.tensor((data8 - np.min(data8)) / (np.max(data8) - np.min(data8)))
data9= torch.tensor((data9 - np.min(data9)) / (np.max(data9) - np.min(data9)))

class DatasetXY(Dataset):
    def __init__(self, x, y):
        self._x = x
        self._y = y
        self._len = len(x)

    def __getitem__(self, item):  # 每次循环的时候返回的值
        return self._x[item], self._y[item]

    def __len__(self):
        return self._len

dataset0= DatasetXY(data0,label0)
dataset1= DatasetXY(data1,label1)
dataset2= DatasetXY(data2,label2)
dataset3= DatasetXY(data3,label3)
dataset4= DatasetXY(data4,label4)
dataset5= DatasetXY(data5,label5)
dataset6= DatasetXY(data6,label6)
dataset7= DatasetXY(data7,label7)
dataset8= DatasetXY(data8,label8)
dataset9= DatasetXY(data9,label9)


train0_iter=data.DataLoader(dataset0,batch_size=64,num_workers=0)
train1_iter=data.DataLoader(dataset1,batch_size=64,num_workers=0)
train2_iter=data.DataLoader(dataset2,batch_size=64,num_workers=0)
train3_iter=data.DataLoader(dataset3,batch_size=64,num_workers=0)
train4_iter=data.DataLoader(dataset4,batch_size=64,num_workers=0)
train5_iter=data.DataLoader(dataset5,batch_size=64,num_workers=0)
train6_iter=data.DataLoader(dataset6,batch_size=64,num_workers=0)
train7_iter=data.DataLoader(dataset7,batch_size=64,num_workers=0)
train8_iter=data.DataLoader(dataset8,batch_size=64,num_workers=0)
train9_iter=data.DataLoader(dataset9,batch_size=64,num_workers=0)

for x,y in train9_iter:
    x=torchvision.utils.make_grid(x)
    # print(x)
    # x=torch.squeeze(x)
    # print(x.shape)
    plt.imshow(np.transpose(x.numpy(),(1,2,0)),aspect='auto')
    plt.show()
    break

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值