erlang学习五

信息技术领域关键组件与应用
本文深入探讨了信息技术领域的核心组件及其应用,包括但不限于前端开发、后端开发、移动开发、游戏开发、大数据开发等细分领域。通过实例解析,展示了各技术领域的关键实践和最新趋势,旨在帮助开发者深化理解并灵活运用这些技术。

通信:

whereis(进程名) 判断节点是否存在该进程名,存在则返回进程PID,否则返回undefined

<span style="font-size:18px;"><span style="font-size:18px;">-module(tut).
-export([logon/1,logoff/0,send/2,clint/2])<span style="font-family:Arial, Helvetica, sans-serif;">.</span></span><span style="font-size:18px;">


%%% %%% %%% %%% command

server_node() ->
	fa.


logon(Name) ->
	case whereis(mess_client) of
		undefined ->
			register(mess_client,spawn(tut,client,[server_node(),Name]));
		_ -> already_logon
	end.


logoff() ->
	mess_client ! logoff.


send(ToName,Message) ->
	case whereis(mess_client) of
		undefined ->
			not_loged;
		_ ->
			mess_client ! {message_to,ToName,Message}
	end.

%%% %%% %%% %%% client

client(Server_Node,Name) ->
	{messager,Server_Node} ! {self(),logon,Name},
	await_result(),
	client(Server_Node).


await_result() ->
	receive
		{messager,stop,Why} ->
			io:format("stop, ~p~n",[Why]),
			exit(normal);
		{messager,What} ->
			io:format("~p~n",[What])
	end.


client(Server_Node) ->
	receive
		logoff ->
			{messager,Server_Node} ! {self(),logoff},
			exit(normal);
		{message_to,ToName,Message} ->
			{messager,Server_Node} ! {self(),message,ToName,Message},
			await_result();
		{message_from,Name,Message} ->
			io:format("message_from ~p: ~p~n",[Name,Message])
	end,</span><pre name="code" class="plain"><span style="white-space:pre">	</span>client(Server_Node).</span>

kememmber(值,位置,列表)查找是否列表每个数组在指定位置是该值,返回true,false;

keydelete同上,删除操作,返回列表;

keyserch同上,查找操作,存在返回{value,列表元素},否则返回false

<span style="font-size:18px;"><span style="font-size:18px;">-module(tut4).
-export([start_server/0]).


start_server() ->
	register(messager,spawn(tut4,server,[[]])).


server(User_List) ->
	receive
		{From,logon,Name} ->
			NewLs = server_Logon(From,Name,User_List),
			server(NewLs);
		{From,logoff} ->
			NewLs = server_Logoff(From,User_List),
			server(NewLs);
		{From,message,ToName,Message} ->
			server_transfer(From,ToName,Message,User_List),
			io:format("list is now: ~p~n",[User_List]),
			server(User_List)
	end.


server_Logon(From,Name,User_List) ->
	case lists:keymember(Name,2,User_List) of
		true ->
			From ! {messager,stop,user_exit},
			User_List;
		false ->
			From ! {messager,loged_on},
			[{From,Name} | User_List]
	end.

server_Logoff(From,User_List) ->
	list:keydelete(From,1,User_List).


server_transfer(From,ToName,Message,User_List) ->
	case list:keysearch(From,1,User_List) of
		{value,{From,Name}} ->
			server_transfer(From,Name,ToName,Message,User_List);
		false ->
			From ! {messager,stop,you_are_not_logon}
	end.


server_transfer(From,Name,ToName,Message,User_List) ->
	case list:keysearch(ToName,2,User_List) of
		{value,{ToPID,ToName}} ->
			ToPID ! {message_from,Name,Message},
			From ! {messager,sent};
		false ->
			From ! {messager,receiver_not_found}
	end.
</span></span></span>


鲁棒性:

上个例子如果client不退出,将一直持有该client。

Timeout:

当进入receive就会开始after 5000,当receive满足条件,timeout被取消;

否则直到5000毫秒执行after;

after必须放在receive最后;

<span style="font-size:18px;"><span style="font-size:18px;">-module(tut).
-export([start_pong/0,start_ping/1]).



start_pong() ->
	register(pong,spawn(tut,pong,[])).

pong() ->
	receive
		{ping,Ping_PID} ->
			io:format("pong receive ping~n"),
			Ping_PID ! pong,
			pong()
	after 5000 ->
		io:format("pong timed out~n")
	end.


start_ping(Pong_Node) ->
	spawn(tut,ping,[3,Pong_Node]).



ping(0,Pong_Node) ->
	io:format("ping finished ~n");


ping(N,Pong_Node) ->
	{pong,Pong_Node} ! {ping,self()},
	receive
		pong ->
			io:format("ping receive pong~n")
	end,
	ping(N - 1,Pong_Node).





</span></span>


link(Other_PID),在PID进程与当前进程建立连接;

当一个进程结束,它发送信号给连接的进程;

信号包含结束进程PID和结束原因;

默认行为当进程收到normal信号则忽略它且链接进程不会结束

spawn_link和spawn一样,多个创建链接;

<span style="font-size:18px;">-module(tut).
-export([start/0,client/0,logoff/0,ping/1,isexit/0]).


isexit() ->
	case whereis(single) of
		undefined ->
			io:format("not exit~n");
		_ ->
			io:format("exit~n")
	end.


start() ->
	PID = spawn(tut,client,[]),
	register(single,PID),
	spawn(tut,ping,[PID]).


logoff() ->
	single ! logoff.


client() ->
	receive
		logoff ->
			exit(normal)
	end.


ping(PID) ->
	link(PID),
	exit(normal).
</span>

把函数ping 的exit(normal)改成exit(ping) 结果:


可以更改进程的默认行为,以便它收到异常退出信号时不会被杀死,但是所有的信号都会被转化为正常的消息,格式为{‘EXIT’,FromID,Reason}并被添加到消息队列中,设置方法:

process_flag(trap_exit,true),同样还有其他的标记;

该例子中client不会结束,但会收到信号消息,输出后结束,同样会捕获exit(normal);

<span style="font-size:18px;"><span style="font-size:18px;">-module(tut).
-export([start/0,client/0,logoff/0,ping/1,isexit/0]).


isexit() ->
	case whereis(single) of
		undefined ->
			io:format("not exit~n");
		_ ->
			io:format("exit~n")
	end.


start() ->
	PID = spawn(tut,client,[]),
	register(single,PID),
	spawn(tut,ping,[PID]).


logoff() ->
	single ! logoff.


client() ->
	process_flag(trap_exit,true),
	receive
		logoff ->
			exit(normal);
		{'EXIT',From,Reson} ->
			io:format("pong get~p~n",[{'exit',From,Reson}])
	end.


ping(PID) ->
	link(PID),
	exit(ping).
</span></span>


Records and macros:

config.hrl
header file for configuration data
server_client_interface.hrl
interface definitions between the client and the messenger
user_interface.erl
functions for the user interface
client.erl
functions for the client side of the messenger
server.erl
functions for the server side of the messenger

-record(name_of_record,{field1,field2,...}}.

等价于:

-record({name_of_record,field1,field2,...}}.

<span style="font-size:18px;">%%% server_client_interface
-record(logon,{clientPID,name}).


-record(abort,{reason}).

-record(reply,{message}).

-record(logoff,{name}).
</span>


<span style="font-size:18px;">%%% server
-module(tut).
-export([start/0,server/1]).
-include("mess_interface.hrl").

start() ->
	process_flag(trap_exit,true),
	register(messenger,spawn(?MODULE,server,[[]])).


server(User_Ls) ->
	receive
		#logon{clientPID = FromPID,name = Name} ->
			NewLs = server_Logon(FromPID,Name,User_Ls),
			io:format("userlist ~p~n",[NewLs]),
			server(NewLs);
		{'EXIT',FromPID,_} ->
			NewLs = server_logoff(FromPID,User_Ls),
			io:format("userlist ~p~n",[NewLs]),
			server(NewLs);
		{logoff,FromPID} ->
			NewLs = server_logoff(FromPID,User_Ls),
			io:format("userlist ~p~n",[NewLs]),
			server(NewLs)
	end.


server_Logon(FromPID,Name,User_Ls) ->
	case lists:keymember(Name,2,User_Ls) of
		true ->
			FromPID ! #abort{reason = user_exit},
			User_Ls;
		false ->
			FromPID ! #reply{message = logon},
			link(FromPID),
			[{FromPID,Name} | User_Ls]
	end.



server_logoff(FromPID,User_Ls) ->
	list:keydelete(FromPID,1,User_Ls).
</span>



<span style="font-size:18px;">%%% client
-module(tut4).
-export([client/2]).
-include("mess_interface.hrl").

client(Server_Node,Name) ->
	{messenger,Server_Node} ! #logon{clientPID = self(),name = Name},
	await_result(),
	client(Server_Node).


await_result() ->
	receive
		#abort{reason = Why} ->
			io:format("abort ~p~n",[Why]);
		#reply{message = What} ->
			io:format("reply ~p~n",[What])
	end.


client(Server_Node) ->
	receive
		logoff ->
			exit(normal)
	end.

</span>


<span style="font-size:18px;">%%% config.hrl
-define(server_node,server@wsy).
</span>


<span style="font-size:18px;">%%% user_interface
-module(tut5).
-export([logon/1,logoff/0]).
-include("config.hrl").

logon(Name) ->
	case whereis(client) of
		undefined ->
			register(client,spawn(tut4,client,[?server_node,Name]));
		_ ->
			already_logon
	end.


logoff() ->
	client ! logoff.
</span>





内容概要:本文围绕EKF SLAM(扩展卡尔曼滤波同步定位与地图构建)的性能展开多项对比实验研究,重点分析在稀疏与稠密landmark环境下、预测与更新步骤同时进行与非同时进行的情况下的系统性能差异,并进一步探讨EKF SLAM在有色噪声干扰下的鲁棒性表现。实验考虑了不确定性因素的影响,旨在评估不同条件下算法的定位精度与地图构建质量,为实际应用中EKF SLAM的优化提供依据。文档还提及多智能体系统在遭受DoS攻击下的弹性控制研究,但核心内容聚焦于SLAM算法的性能测试与分析。; 适合人群:具备一定机器人学、状态估计或自动驾驶基础知识的科研人员及工程技术人员,尤其是从事SLAM算法研究或应用开发的硕士、博士研究生和相关领域研发人员。; 使用场景及目标:①用于比较EKF SLAM在不同landmark密度下的性能表现;②分析预测与更新机制同步与否对滤波器稳定性与精度的影响;③评估系统在有色噪声等非理想观测条件下的适应能力,提升实际部署中的可靠性。; 阅读建议:建议结合MATLAB仿真代码进行实验复现,重点关注状态协方差传播、观测更新频率与噪声模型设置等关键环节,深入理解EKF SLAM在复杂环境下的行为特性。稀疏 landmark 与稠密 landmark 下 EKF SLAM 性能对比实验,预测更新同时进行与非同时进行对比 EKF SLAM 性能对比实验,EKF SLAM 在有色噪声下性能实验
内容概要:本文围绕“基于主从博弈的售电商多元零售套餐设计与多级市场购电策略”展开,结合Matlab代码实现,提出了一种适用于电力市场化环境下的售电商优化决策模型。该模型采用主从博弈(Stackelberg Game)理论构建售电商与用户之间的互动关系,售电商作为领导者制定电价套餐策略,用户作为跟随者响应电价并调整用电行为。同时,模型综合考虑售电商在多级电力市场(如日前市场、实时市场)中的【顶级EI复现】基于主从博弈的售电商多元零售套餐设计与多级市场购电策略(Matlab代码实现)购电组合优化,兼顾成本最小化与收益最大化,并引入不确定性因素(如负荷波动、可再生能源出力变化)进行鲁棒或随机优化处理。文中提供了完整的Matlab仿真代码,涵盖博弈建模、优化求解(可能结合YALMIP+CPLEX/Gurobi等工具)、结果可视化等环节,具有较强的可复现性和工程应用价值。; 适合人群:具备一定电力系统基础知识、博弈论初步认知和Matlab编程能力的研究生、科研人员及电力市场从业人员,尤其适合从事电力市场运营、需求响应、售电策略研究的相关人员。; 使用场景及目标:① 掌握主从博弈在电力市场中的建模方法;② 学习售电商如何设计差异化零售套餐以引导用户用电行为;③ 实现多级市场购电成本与风险的协同优化;④ 借助Matlab代码快速复现顶级EI期刊论文成果,支撑科研项目或实际系统开发。; 阅读建议:建议读者结合提供的网盘资源下载完整代码与案例数据,按照文档目录顺序逐步学习,重点关注博弈模型的数学表达与Matlab实现逻辑,同时尝试对目标函数或约束条件进行扩展改进,以深化理解并提升科研创新能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MyObject-C

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值