hdu 1058(简单dp)Humble Numbers

本文介绍了一种特殊的数——谦逊数,这些数仅由2、3、5、7这几个质因数构成。通过动态规划算法,可以高效地找出序列中的任意一项。文中详细解释了算法的实现,并给出了一段C++代码示例。

Humble Numbers

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 24184    Accepted Submission(s): 10590


Problem Description
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble numbers.

Write a program to find and print the nth element in this sequence
 

Input
The input consists of one or more test cases. Each test case consists of one integer n with 1 <= n <= 5842. Input is terminated by a value of zero (0) for n.
 

Output
For each test case, print one line saying "The nth humble number is number.". Depending on the value of n, the correct suffix "st", "nd", "rd", or "th" for the ordinal number nth has to be used like it is shown in the sample output.
 

Sample Input
1 2 3 4 11 12 13 21 22 23 100 1000 5842 0
 

Sample Output
The 1st humble number is 1. The 2nd humble number is 2. The 3rd humble number is 3. The 4th humble number is 4. The 11th humble number is 12. The 12th humble number is 14. The 13th humble number is 15. The 21st humble number is 28. The 22nd humble number is 30. The 23rd humble number is 32. The 100th humble number is 450. The 1000th humble number is 385875. The 5842nd humble number is 2000000000.
简单dp搞一搞,在外面打个表即可。
dp思想:从第一位开始往5842推,第i位肯定是前面i-1位乘以2,3,5,7四个数中一个的最小数,所以,用4个数来分别标记最后乘以2,3,5,7的数。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<stack>
#include<queue>
#include<algorithm>
#include<string>
#include<cstring>
#include<cmath>
#include<vector>
#include<map>
#include<set>
#define eps 1e-8
#define zero(x) (((x>0?(x):-(x))-eps)
#define mem(a,b) memset(a,b,sizeof(a))
#define memmax(a) memset(a,0x3f,sizeof(a))
#define pfn printf("\n")
#define ll __int64
#define ull unsigned long long
#define mod 1000000007
#define sf(a) scanf("%d",&a)
#define sf64(a) scanf("%I64d",&a)
#define sf264(a,b) scanf("%I64d%I64d",&a,&b)
#define sf364(a,b,c) scanf("%I64d%I64d%I64d",&a,&b,&c)
#define sf2(a,b) scanf("%d%d",&a,&b)
#define sf3(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define sf4(a,b,c,d) scanf("%d%d%d%d",&a,&b,&c,&d)
#define sff(a) scanf("%f",&a)
#define sfs(a) scanf("%s",a)
#define sfs2(a,b) scanf("%s%s",a,b)
#define sfs3(a,b,c) scanf("%s%s%s",a,b,c)
#define sfd(a) scanf("%lf",&a)
#define sfd2(a,b) scanf("%lf%lf",&a,&b)
#define sfd3(a,b,c) scanf("%lf%lf%lf",&a,&b,&c)
#define sfd4(a,b,c,d) scanf("%lf%lf%lf%lf",&a,&b,&c,&d)
#define sfc(a) scanf("%c",&a)
#define ull unsigned long long
#define debug printf("***\n")
const double PI = acos(-1.0);
const double e = exp(1.0);
const int INF = 0x7fffffff;;
template<class T> T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template<class T> T lcm(T a, T b) { return a / gcd(a, b) * b; }
template<class T> inline T Min(T a, T b) { return a < b ? a : b; }
template<class T> inline T Max(T a, T b) { return a > b ? a : b; }
bool cmpbig(int a, int b){ return a>b; }
bool cmpsmall(int a, int b){ return a<b; }
using namespace std;
#define MAX 100010
int main()
{
  //  freopen("data.in","r",stdin);
    int n,i;
    int hnum[6000];
    hnum[1]=1;
    int a=1,b=1,c=1,d=1;
    for(i=2;i<=5842;i++)
    {
        hnum[i]=min(hnum[a]*2,min(hnum[b]*3,min(hnum[c]*5,hnum[d]*7)));
        if(hnum[i]==hnum[a]*2) a++;
        if(hnum[i]==hnum[b]*3) b++;
        if(hnum[i]==hnum[c]*5) c++;
        if(hnum[i]==hnum[d]*7) d++;
    }
    while(~sf(n))
    {
        if(n==0)
            break;
        printf("The %d",n);
        if(n%10==1&&n%100!=11)
            printf("st");
        else if(n%10==2&&n%100!=12)
            printf("nd");
        else if(n%10==3&&n%100!=13)
            printf("rd");
        else
            printf("th");
        printf(" humble number is %d.\n",hnum[n]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值