什么是梯度消失?如何加快梯度下降的速度
累乘中一个梯度小于1,那么不断累乘,这个值会越来越小,梯度衰减很大,迅速接近0。在神经网络中是离输出层近的参数,梯度越大,远的参数,梯度越接近0。根本原因是sigmoid函数的缺陷。
方法:1、好的初始化方法,逐层预训练,后向传播微调。2、换激活函数,用relu,leaky——relu。靠的是使梯度靠近1或等于1,避免了在累乘过程中,结果迅速衰减。
避免梯度消失和梯度爆炸的方案:使用新的激活函数Sigmoid函数和双曲正切函数都会导致梯度消失的问题。ReLU函数当x<0,的时候一样会导致无法学习。
利用一些改进的ReLU可以在一定程度上避免梯度消失的问题。例如,ELU和LeakyReLU,这些都是ReLU的变体。
谷歌人工智能写作项目:小发猫
解释sigmoid为什么会导致梯度消失
多层感知机解决了之前无法模拟异或逻辑的缺陷,同时更多的层数也让网络更能够刻画现实世界中的复杂情形rbsci。理论上而言,参数越多的模型复杂度越高,“容量