分析琐思

博客介绍了数学中“分析”的概念,即把对象表示成多个对象的和。求和是分析的基本出发点,通过分析可将复杂对象划分为简单对象。还阐述了微积分研究无穷项求和与逼近,线性代数研究有限项异质对象之和,二者相互关联,最后探讨了分析的重要步骤及经典方法。
“分”的反义字是“和”,是我们熟悉的字。比如:2+3=5,从左往右运算,我们叫求和。那么“分”呢,既然是反义字,就把上面的等式反过来:5=2+3。

把一个对象表示成两个以至更多的对象的和,这个过程叫分析。

通常来说,分析对象应当与被分析对象一致。是数就都是数,是函数就都是函数,是向量就都是向量,是矩阵就都是矩阵。

求和是数学里最基本的运算,减、乘、除是从求和中衍生出来的。而更高级的幂、指、对、三角、微积分等,也是一层一层建立起来的, 最根本的还是这个求和。求和最简单,最容易计算,性质也最简单。所以成了分析的基本出发点。

分析的妙处在于,通过分析可以将较复杂的对象划分为较简单的对象。 比如2和3就比5简单。单独研究2的性质,再单独研究3的性质,再通过简单的求和,就可以把握5的性质。把复杂的东西划分成若干简单对象的和,对各简单对象搞各个击破,再加起来,复杂的东西也就被掌握了。

分析是西方思想中一个根本性的东西。 西方人认为,事物总是有因果的,看到了结果,要分析原因。所谓分析原因,就是找出一堆因素,说明这堆因素合起来导致了结果。 西方人认为,事物总是可以分析的。看到了整体,就要把那些合成这个整体的局部一一分析出来。 现代科学很大一部分就是这么回事。

大学数学里,有很多内容就是在讲分析。数学里的分析还要把含义拓展,就是把一个数学对象合理地表示成若干更简单对象与实数系数之积的和。但微积分和线性代数各有侧重。 微积分研究的是无穷项求和。无穷项之和与有穷项之和是本质不同的。但是无穷项之和是无法运算的,至少不实际。所以要想办法通过一种办法用有穷项之和来近似的代替,这就是逼近。逼近成立的条件是收敛,就是说,只有从一个收敛的无穷项的开头截出一部分来求和,才能被认为是逼近。华人数学家项武义说,微积分就逼近这一板斧,但是无往而不利。

微积分主要研究函数,连续函数的因变量y会由于自变量x的变化而变化。这种变化也是要分析的。当x从x0变成x1时,y是怎样从y0变到y1 的?按照上面的说法,“y的变化(y1-y0)”这一个数学对象,要用一系列比较简单的“变化”相加来表示。数学家找到了一个收敛的“变化”对象的序列,排在头一位的是一个线性的变化量,它的系数就是导数,它本身就是微分dy。数学家又发现,当x的变化量无穷小时,从这个无穷的、收敛的“变化”对象序列中,只要截出第一项,也就是微分dy,就无论如何可以精确描述y的变化了。 曾在一本书上见过这样的说法,泰勒公式是数学分析的顶峰。不知道是不是有道理。我自己觉得是这么回事。 有了泰勒公式,我们可以任意精确地算一个函数在某一点上的值。毕竟只是实数求和嘛。

但是为了表示泰勒公式,我们却用了一个挺复杂的连加代数式。代数式不能象实数那样简单加起来得到一个对象,它只能表示成和的形式。这是我们意识到,在这个连加式中各对象存在某些特别的不同,使它们没法简单地加到一起。 因此我们有必要讨论,把一些性质不同的东西加到一起所形成的这个对象有什么性质。 这就是向量。
 
微积分研究如何把一个对象分解为无穷项同质对象之和,线性代数研究“有限项异质对象之和”这个新对象的性质。一方面,上面说过,微积分到最后还是要化无穷为有穷,化精确为逼近;另一方面,异质对象经过某种处理可以转化为同质对象。比如不同次的幂函数是异质对象,但是一旦代入具体数值则都可以转化为实数,变成了同质对象。因此线性代数研究的问题对微积分很重要。故我认为大学里应先讲线性代数,后讲微积分。

我们的微积分教学,将重点过分倾注在微分和积分的运算上了,其实实践中更为重要的是我们称为“级数”的那部分内容。即研究如何将一个量表达为一个数项级数,如何将一个函数表达为一个函数项级数。

线性代数把异质对象之和(向量)作为研究的基础,研究这些新定义的对象加起来又可以表示什么。其结论是,有限数量的向量连加起来,有可能具有这样的能力,即同维的全部向量都可以表示成这些向量的和。这样的一组具有充分表现能力的向量,是线性无关的向量,组成了一个向量空间,而它们自己构成了这个向量空间里的一组基。

回到分析的概念上,一个向量总可以表示为若干个同阶向量之和,这就是向量的分析。但是并不是所有的这些分析都具有相同的价值。在某种运算中,某种特别的分析能够提供特别优越的性,从而大大简 化运算。比如在大多数情况下,将一个向量表示成一组单位正交基向量的和,就能够在计算中获得特别的便利。 面对某个问题,寻找一个最优越的分析形式,把要研究的对象合理地表示成具有特殊性质的基对象与实数系数之积的和,这是分析的重要步骤,也是成功的关键。在这种表示式中,系数称为坐标。

经典的方法都是以找到一组性质优良的基为开端的,例如:

傅立叶分析以正交函数系为基,因此具有优良性质,自1904年以来取代幂函数系,成为分析主流。

在曲线和曲面拟合中,正交多项式集构成了最佳基函数。 拉格朗日插值多项式具有一个特别的性质,即在本结点上为1,在其他结点上为0。

有限元中的形函数类似拉氏插值多项式。

结构动力学中的主振型迭加法,也是以相互正交的主振型为基,对多质点体系位移进行分析的。

------------------------------------

线性代数中的很多概念跟积分也有相通之处。比如向量的正交与函数的正交,根本就是一回事。这种类比是否可以扩展?也许线性变换与积分变换也有某种可类比性?待考虑。
该数据集通过合成方式模拟了多种发动机在运行过程中的传感器监测数据,旨在构建一个用于机械系统故障检测的基准资源,特别适用于汽车领域的诊断分析。数据按固定时间间隔采集,涵盖了发动机性能指标、异常状态以及工作模式等多维度信息。 时间戳:数据类型为日期时间,记录了每个数据点的采集时刻。序列起始于2024年12月24日10:00,并以5分钟为间隔持续生成,体现了对发动机运行状态的连续监测。 温度(摄氏度):以浮点数形式记录发动机的温度读数。其数值范围通常处于60至120摄氏度之间,反映了发动机在常规工况下的典型温度区间。 转速(转/分钟):以浮点数表示发动机曲轴的旋转速度。该参数在1000至4000转/分钟的范围内随机生成,符合多数发动机在正常运转时的转速特征。 燃油效率(公里/升):浮点型变量,用于衡量发动机的燃料利用效能,即每升燃料所能支持的行驶里程。其取值范围设定在15至30公里/升之间。 振动_X、振动_Y、振动_Z:这三个浮点数列分别记录了发动机在三维空间坐标系中各轴向的振动强度。测量值标准化至0到1的标度,较高的数值通常暗示存在异常振动,可能与潜在的机械故障相关。 扭矩(牛·米):以浮点数表征发动机输出的旋转力矩,数值区间为50至200牛·米,体现了发动机的负载能力。 功率输出(千瓦):浮点型变量,描述发动机单位时间内做功的速率,取值范围为20至100千瓦。 故障状态:整型分类变量,用于标识发动机的异常程度,共分为四个等级:0代表正常状态,1表示轻微故障,2对应中等故障,3指示严重故障。该列作为分类任务的目标变量,支持基于传感器数据预测故障等级。 运行模式:字符串类型变量,描述发动机当前的工作状态,主要包括:怠速(发动机运转但无负载)、巡航(发动机在常规负载下平稳运行)、重载(发动机承受高负荷或高压工况)。 数据集整体包含1000条记录,每条记录对应特定时刻的发动机性能快照。其中故障状态涵盖从正常到严重故障的四级分类,有助于训练模型实现故障预测与诊断。所有数据均为合成生成,旨在模拟真实的发动机性能变化与典型故障场景,所包含的温度、转速、燃油效率、振动、扭矩及功率输出等关键传感指标,均为影响发动机故障判定的重要因素。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论 34
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值