预测算法-三次指数平滑法(Holt-Winters)

本文详细介绍了指数平滑法,包括一次、二次和三次指数平滑,以及Holt Winter线性和季节性指数平滑法。重点讨论了平滑系数α的选择及其对预测效果的影响,并阐述了各种方法适用的场景和限制条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

指数平滑

一次指数平滑

一次指数平滑法是一种特殊的加权平均法,对本期观察值和本期预测值赋予不同的权重,求得下一期预测值的方法。这种方法既不需要存储全部历史数据,也不需要存储一组数据,从而可以大大减少数据存储问题。其通式为:

 

Ft+1为t+1期的预测值,xt为t期实际观测值,α为权值(也称为平滑系数),α越小,参考之前的时间点越多,α越大,参考之前的时间点越少。

根据通式,迭代计算得到:

 

由于(1−α)的取值在0到1之间,所以(1−α)n的值会越来越小,即离t+1期越久远的观测值,对t+1期的预测值的影响越小。式子中最后一项的F1就是第一期的预测值(初始值),通常可以取第一期的实际值为初值或者取最初几期的平均值为初值(一般分为两种情况:**当样本为大样本时(n>42),F1一般以第一期的观察值代替;当样本为小样本时(n<42),F1一般取前几期的平均值代替**)。当t很大时(1−α)tF1非常接近0,所以F1在式子中的影响并不大。用文字描述该通式就是:

对离预测期较近的观察值赋予较大的权数,对离预测值较远的观察值赋予较小的权数,权数由近到远按指数规律递减,所以叫做指数平滑法。

新预测值是根据预测误差对原预测值进行修正得到的。α的大小表明了修正的幅度。α值愈大,修正的幅度愈大,α值愈小,修正的幅度愈小。 因此,α值既代表了预测模型对时间序列数据变化的反应速度,又体现了预测模型修匀误差的能力。

在实际应用中,α值是根据时间序列的变化特性来选取的。 若时间序列的波动不大

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值