Linear Algebra Lecture 6

本文探讨了线性代数中的向量空间及其子空间概念,包括平面与直线作为子空间的例子。详细解析了矩阵A的列空间,即所有列向量的线性组合构成的空间,并讨论了矩阵方程Ax=b的解的存在性条件。同时介绍了矩阵A的零空间,即所有满足Ax=0的向量x构成的空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Linear Algebra Lecture 6

1.Vector spaces and subspaces
2. Column space of A
3. Null space of A

Vector space

Vector space requirements v+w and cv are in the space, all the linear combinations cv+dw are in the space.

Example 1
Take a plane P and a line L in R3 space,
Is PL a subspace or not?
No, because can’t add.

Is PL a subspace or not?
Yes.


Column space of A

A=123411112345, what is in C(A)?

A is a subspace of R4. Take 3 column’s linear combinations. The column space of A is all linear combinations of the columns.

Ax=123411112345x1x2x3=b1b2b3b4

Does Ax=b have a solution for every b?

No, because A has 4 equations and 3 unknowns.
The combinations of these columns don’t fill the whole four dimensional space.There’s going to be some vectors b that are not combinations of these three columns.

Which vectors b allow this system to be solved?

I can solve Ax=b exactly when the right-hand side b is a vector in the column space. Because the column space contains all the combinations, all the Ax. So those are the b*s that I can deal with. If b is not a combination of the columns, then there is no *x, there is no way to solve Ax=b.

Are those three columns independent(线性无关)?

No, because column 3 is the sum of column 1 and 2. So these two columns are pivot columns(主列). The column space is a two dimensional subspace of R4.


Null space of A

Null space of A contains all solutions x, to the equation Ax=0.

Ax=123411112345x1x2x3=0000, what is in N(A)?

c111

The solutions to Ax=0 always give a subspace?
If Av=0 and Aw=0, then A(v+w)=0, then cAv=0, so the null space is always a vector space.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值