命名方法

本文介绍了Pascal命名法和Camel命名法的基本规则及其应用场景。Pascal命名法适用于类名、方法名及公共属性名,而Camel命名法主要用于非公共属性。通过具体的代码示例展示了这两种命名法的实际应用。

关于命名的方法

Pascal命名法(始于大写字母)用以所有的类和方法名,Pascal命名法同样也用于公共attribute的名称。

Camel命名法:(始于小写字母)用于非公共attribute

如:

public class Student//类名首字母为大写的S

{

   private string name;//私有属性(attribute)用小写字母n

   public string Major;//公共attribute用大写字母M

  

   public void DoSomething(){  //方法DoSomething用大写字母D

   //一个本地的变量,如果没有明确的声明为private,

   //则不能从方法外部访问,所以用小写字母开头。

   Int x = 0;

 

   //细节从略… …

   }

   private void DoSomthingElse() { //即使是私有的方法也用了大写字母D,

   //细节从略……               因为所有方法名都使用Pascal命名法,

   }                           //无论其可访问性如何

  

  //等等。

}

 

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值