CVPR 2019 论文大盘点-人脸技术篇

本文总结了CVPR2019中关于人脸技术的研究进展,包括人脸重建与识别、表情分析、检测与对齐等多个方向。特别关注了工业界提出的实用技术,如新Loss设计、活体检测、3D人脸重建等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文盘点了 CVPR 2019 所有人脸相关论文,其中研究人脸重建与识别的论文最多,人脸识别中新Loss的设计有好几篇,人脸表情分析也不少,检测和对齐相对很少了。

这些论文有较大数量都来自工业界,一些很实用的技术被提出来,用于工业化落地场景实践!

如果想要下载所有CVPR 2019 论文,请点击这里:
CVPR2019 最全整理:全部论文下载,GitHub 源码汇总、直播视频、论文解读等

CVPR2019 : 最全人脸相关论文分类汇总 58 篇

CVPR 2019 论文解读集锦

希望对研究开发相关方向的同学有帮助。

人脸反欺诈、人脸识别对抗攻击

大规模人脸反欺诈、活体检测库,中科院、京东等

A Dataset and Benchmark for Large-Scale Multi-Modal Face Anti-Spoofing

Shifeng Zhang, Xiaobo Wang, Ajian Liu, Chenxu Zhao, Jun Wan, Sergio Escalera, Hailin Shi, Zezheng Wang, Stan Z. Li

深度树学习,用于零样本的人脸反欺诈,密歇根州立大学

Deep Tree Learning for Zero-Shot Face Anti-Spoofing

Yaojie Liu, Joel Stehouwer, Amin Jourabloo, Xiaoming Liu

去相关的对抗学习,用于年龄不变的人脸识别,腾讯

Decorrelated Adversarial Learning for Age-Invariant Face Recognition

Hao Wang, Dihong Gong, Zhifeng Li, Wei Liu

人脸识别对抗攻击,香港浸会大学

Multi-Adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection

Rui Shao, Xiangyuan Lan, Jiawei Li, Pong C. Yuen

人脸识别对抗攻击,清华、腾讯、港理工

Efficient Decision-Based Black-Box Adversarial Attacks on Face Recognition

Yinpeng Dong, Hang Su, Baoyuan Wu, Zhifeng Li, Wei Liu, Tong Zhang, Jun Zhu

人脸重建与生成

多视图3D人脸变形模型回归,腾讯、香港中文、上交、电子科大

MVF-Net: Multi-View 3D Face Morphable Model Regression

Fanzi Wu, Linchao Bao, Yajing Chen, Yonggen Ling, Yibing Song, Songnan Li, King Ngi Ngan, Wei Liu

2500fps的3D人脸解码,3DMM(3D变形模型),帝国理工等

Dense 3D Face Decoding Over 2500FPS: Joint Texture & Shape Convolutional Mesh Decoders

Yuxiang Zhou, Jiankang Deng, Irene Kotsia, Stefanos Zafeiriou

GAN 用于3D 人脸重建,帝国理工等

GANFIT: Generative Adversarial Network Fitting for High Fidelity 3D Face Reconstruction

Baris Gecer, Stylianos Ploumpis, Irene Kotsia, Stefanos Zafeiriou

3DMM(3D变形模型),密歇根州立大学

Towards High-Fidelity Nonlinear 3D Face Morphable Model

Luan Tran, Feng Liu, Xiaoming Liu

3DMM(3D变形模型),帝国理工等

Combining 3D Morphable Models: A Large Scale Face-And-Head Model

Stylianos Ploumpis, Haoyang Wang, Nick Pears, William A. P. Smith, Stefanos Zafeiriou

3D人脸形状的解偶表示学习,中国科技大学

Disentangled Representation Learning for 3D Face Shape

Zi-Hang Jiang, Qianyi Wu, Keyu Chen, Juyong Zhang

单目人脸3D重建、跟踪与动画驱动,明尼苏达大学、Facebook

Self-Supervised Adaptation of High-Fidelity Face Models for Monocular Performance Tracking

Jae Shin Yoon, Takaaki Shiratori, Shoou-I Yu, Hyun Soo Park

多度量回归网络,用于非限制的人脸重建,北大、腾讯

MMFace: A Multi-Metric Regression Network for Unconstrained Face Reconstruction

Hongwei Yi, Chen Li, Qiong Cao, Xiaoyong Shen, Sheng Li, Guoping Wang, Yu-Wing Tai

单图像重建3D人脸形状和表情,德国马普研究所

Learning to Regress 3D Face Shape and Expression From an Image Without 3D Supervision

Soubhik Sanyal, Timo Bolkart, Haiwen Feng, Michael J. Black

密集3D人脸对应,中科院,Visytem公司

Boosting Local Shape Matching for Dense 3D Face Correspondence

Zhenfeng Fan, Xiyuan Hu, Chen Chen, Silong Peng

从视频中人脸模型和人脸3D重建的联合学习,MPI Informatics等

FML: Face Model Learning From Videos

Ayush Tewari, Florian Bernard, Pablo Garrido, Gaurav Bharaj, Mohamed Elgharib, Hans-Peter Seidel, Patrick Perez, Michael Zollhofer, Christian Theobalt

使用动态像素级Loss,层次跨模态说话人脸生成,罗彻斯特大学

Hierarchical Cross-Modal Talking Face Generation With Dynamic Pixel-Wise Loss

Lele Chen, Ross K. Maddox, Zhiyao Duan, Chenliang Xu

通过语音重建人脸,MIT

Speech2Face: Learning the Face Behind a Voice

Tae-Hyun Oh, Tali Dekel, Changil Kim, Inbar Mosseri, William T. Freeman, Michael Rubinstein, Wojciech Matusik

人脸聚类

图卷积人脸聚类,清华、澳大利亚国立大学

Linkage Based Face Clustering via Graph Convolution Network

Zhongdao Wang, Liang Zheng, Yali Li, Shengjin Wang

图卷积人脸聚类,商汤、港中文、南洋理工

Learning to Cluster Faces on an Affinity Graph

Lei Yang, Xiaohang Zhan, Dapeng Chen, Junjie Yan, Chen Change Loy, Dahua Lin

人脸识别

长尾噪声数据的不平等训练,用于深度人脸识别,北邮、佳能

Unequal-Training for Deep Face Recognition With Long-Tailed Noisy Data

Yaoyao Zhong, Weihong Deng, Mei Wang, Jiani Hu, Jianteng Peng, Xunqiang Tao, Yaohai Huang

Exclusive正则化的人脸识别,南开大学

RegularFace: Deep Face Recognition via Exclusive Regularization

Kai Zhao, Jingyi Xu, Ming-Ming Cheng

深度分布表示,用于人脸识别,清华

UniformFace: Learning Deep Equidistributed Representation for Face Recognition

Yueqi Duan, Jiwen Lu, Jie Zhou

ArcFace Loss,人脸识别,帝国理工

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

Jiankang Deng, Jia Guo, Niannan Xue, Stefanos Zafeiriou

梯度提精的人脸识别Loss,商汤、港中文、中科院深圳先进技术研究院

P2SGrad: Refined Gradients for Optimizing Deep Face Models

Xiao Zhang, Rui Zhao, Junjie Yan, Mengya Gao, Yu Qiao, Xiaogang Wang, Hongsheng Li

人脸识别Loss AdaptiveFace,中科院、中科院大学、澳门科技大学

AdaptiveFace: Adaptive Margin and Sampling for Face Recognition

Hao Liu, Xiangyu Zhu, Zhen Lei, Stan Z. Li

人脸识别新Loss AdaCos,商汤、港中文、中科院深圳先进技术研究院

AdaCos: Adaptively Scaling Cosine Logits for Effectively Learning Deep Face Representations

Xiao Zhang, Rui Zhao, Yu Qiao, Xiaogang Wang, Hongsheng Li

低秩拉普拉斯均匀混合模型,用于鲁棒人脸识别,中山大学

Low-Rank Laplacian-Uniform Mixed Model for Robust Face Recognition

Jiayu Dong, Huicheng Zheng, Lina Lian

抗噪人脸识别训练,北京化工大学、Yunshitu Corporation

Noise-Tolerant Paradigm for Training Face Recognition CNNs

Wei Hu, Yangyu Huang, Fan Zhang, Ruirui Li

人脸识别特征变换学习,密歇根州立大学、NEC、加利福尼亚大学

Feature Transfer Learning for Face Recognition With Under-Represented Data

Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming Liu, Manmohan Chandraker

低质量3D 人脸识别的轻量级高效方法,北航、Anyvision

Led3D: A Lightweight and Efficient Deep Approach to Recognizing Low-Quality 3D Faces

Guodong Mu, Di Huang, Guosheng Hu, Jia Sun, Yunhong Wang

面向极端姿态与表情的非监督人脸归一化,用于人脸识别预处理,北邮、滴滴

Unsupervised Face Normalization With Extreme Pose and Expression in the Wild

Yichen Qian, Weihong Deng, Jiani Hu

跨模态人脸识别,商汤

R3 Adversarial Network for Cross Model Face Recognition

Ken Chen, Yichao Wu, Haoyu Qin, Ding Liang, Xuebo Liu, Junjie Yan

人脸检测

组采样用于尺度不变的人脸检测,西安交大、微软亚研院

Group Sampling for Scale Invariant Face Detection

Xiang Ming, Fangyun Wei, Ting Zhang, Dong Chen, Fang Wen

人脸检测,南京理工、腾讯

DSFD: Dual Shot Face Detector

Jian Li, Yabiao Wang, Changan Wang, Ying Tai, Jianjun Qian, Jian Yang, Chengjie Wang, Jilin Li, Feiyue Huang

人脸检测,马里兰大学

FA-RPN: Floating Region Proposals for Face Detection

Mahyar Najibi, Bharat Singh, Larry S. Davis

多人的联合人脸检测与人脸运动重定向,华盛顿大学、微软

Joint Face Detection and Facial Motion Retargeting for Multiple Faces

Bindita Chaudhuri, Noranart Vesdapunt, Baoyuan Wang

表情分析与人脸动作单元检测

联合表示与估计学习,用于人脸动作单元强度估计,腾讯、中科院模式识别国家实验室、伦斯勒理工学院

Joint Representation and Estimator Learning for Facial Action Unit Intensity Estimation

Yong Zhang, Baoyuan Wu, Weiming Dong, Zhifeng Li, Wei Liu, Bao-Gang Hu, Qiang Ji

人脸动作检测、中科院等

Local Relationship Learning With Person-Specific Shape Regularization for Facial Action Unit Detection

Xuesong Niu, Hu Han, Songfan Yang, Yan Huang, Shiguang Shan

人脸表情相似性的紧凑嵌入,人脸表情分析新范式,Google

A Compact Embedding for Facial Expression Similarity

Raviteja Vemulapalli, Aseem Agarwala

视频中自监督表示学习用于人脸动作检测,中科院、鹏城实验室

Self-Supervised Representation Learning From Videos for Facial Action Unit Detection

Yong Li, Jiabei Zeng, Shiguang Shan, Xilin Chen

人脸对齐

语义对齐,用于人脸特征点检测,中科院自动化所

Semantic Alignment: Finding Semantically Consistent Ground-Truth for Facial Landmark Detection

Zhiwei Liu, Xiangyu Zhu, Guosheng Hu, Haiyun Guo, Ming Tang, Zhen Lei, Neil M. Robertson, Jinqiao Wang

遮挡自适应的深度网络,用于鲁棒人脸特征点检测,深圳大学

Robust Facial Landmark Detection via Occlusion-Adaptive Deep Networks

Meilu Zhu, Daming Shi, Mingjie Zheng, Muhammad Sadiq

人脸编辑

3D引导的细粒度人脸编辑,斯坦福大学、Snap

3D Guided Fine-Grained Face Manipulation

Zhenglin Geng, Chen Cao, Sergey Tulyakov

语义部件分解,用于人脸属性编辑,港中文、腾讯、Adobe、字节跳动

Semantic Component Decomposition for Face Attribute Manipulation

Ying-Cong Chen, Xiaohui Shen, Zhe Lin, Xin Lu, I-Ming Pao, Jiaya Jia

人脸老化

视频人脸老化,基于深度强化学习,使得老化后的人脸在视频中更具一致性,康考迪亚大学、阿肯色大学、克莱姆森大学、卡内基梅隆大学

Automatic Face Aging in Videos via Deep Reinforcement Learning

Chi Nhan Duong, Khoa Luu, Kha Gia Quach, Nghia Nguyen, Eric Patterson, Tien D. Bui, Ngan Le

基于小波的GAN,用于属性感知的人脸老化,中科院

Attribute-Aware Face Aging With Wavelet-Based Generative Adversarial Networks

Yunfan Liu, Qi Li, Zhenan Sun

人脸肖像化

层次化GANs,用于从人脸照片生成肖像画,清华、英国Cardiff University

APDrawingGAN: Generating Artistic Portrait Drawings From Face Photos With Hierarchical GANs

Ran Yi, Yong-Jin Liu, Yu-Kun Lai, Paul L. Rosin

人脸采集 Face Capture

高质量人脸采集,使用肌肉解剖模型,斯坦福大学、Industrial Light & Magic

High-Quality Face Capture Using Anatomical Muscles

Michael Bao, Matthew Cong, Stephane Grabli, Ronald Fedkiw

单目人脸、肢体、手部动作采集,卡内基梅隆大学

Monocular Total Capture: Posing Face, Body, and Hands in the Wild

Donglai Xiang, Hanbyul Joo, Yaser Sheikh

单图像的3D手部、人脸、肢体采集,MPI

Expressive Body Capture: 3D Hands, Face, and Body From a Single Image

Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, Michael J. Black

推荐阅读
CVPR 2019 论文大盘点—文本图像相关篇
CVPR 2019 论文大盘点—目标检测篇

几篇CVPR关于multi-task的论文笔记整理,包括 一、 多任务课程学习Curriculum Learning of Multiple Tasks 1 --------------^CVPR2015/CVPR2016v--------------- 5 二、 词典对分类器驱动卷积神经网络进行对象检测Dictionary Pair Classifier Driven Convolutional Neural Networks for Object Detection 5 三、 用于同时检测和分割的多尺度贴片聚合(MPA)* Multi-scale Patch Aggregation (MPA) for Simultaneous Detection and Segmentation ∗ 7 四、 通过多任务网络级联实现感知语义分割Instance-aware Semantic Segmentation via Multi-task Network Cascades 10 五、 十字绣网络多任务学习Cross-stitch Networks for Multi-task Learning 15 --------------^CVPR2016/CVPR2017v--------------- 23 六、 多任务相关粒子滤波器用于鲁棒物体跟踪Multi-Task Correlation Particle Filter for Robust Object Tracking 23 七、 多任务网络中的全自适应特征共享与人物属性分类中的应用Fully-Adaptive Feature Sharing in Multi-Task Networks With Applications in Person Attribute Classification 28 八、 超越triplet loss:一个深层次的四重网络,用于人员重新识别Beyond triplet loss: a deep quadruplet network for person re-identification 33 九、 弱监督级联卷积网络Weakly Supervised Cascaded Convolutional Networks 38 十、 从单一图像深度联合雨水检测和去除Deep Joint Rain Detection and Removal from a Single Image 43 十一、 什么可以帮助行人检测?What Can Help Pedestrian Detection? (将额外的特征聚合到基于CNN的行人检测框架) 46 十二、 人员搜索的联合检测和识别特征学习Joint Detection and Identification Feature Learning for Person Search 50 十三、 UberNet:使用多种数据集和有限内存训练用于低,中,高级视觉的通用卷积神经网络UberNet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision using Diverse Datasets and Limited Memory 62 一共13篇,希望能够帮助到大家
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值