当前在网络传输应用中,广泛采用的是TCP/IP通信协议及其标准的socket应用开发编程接口(API)。TCP/IP传输层有两个并列的协议:TCP和UDP。其中TCP(transport control protocol,传输控制协议)是面向连接的,提供高可靠性服务。UDP(user datagram protocol,用户数据报协议)是无连接的,提供高效率服务。在实际工程应用中,对可靠性和效率的选择取决于应用的环境和需求。一般情况下,普通数据的网络传输采用高效率的udp,重要数据的网络传输采用高可靠性的TCP。
在应用开发过程中,笔者发现基于TCP网络传输的应用程序有时会出现粘包现象(即发送方发送的若干包数据到接收方接收时粘成一包)。针对这种情况,我们进行了专题研究与实验。本文重点分析了TCP网络粘包问题,并结合实验结果提出了解决该问题的对策和方法,供有关工程技术人员参考。
一、TCP协议简介
TCP是一个面向连接的传输层协议,虽然TCP不属于iso制定的协议集,但由于其在商业界和工业界的成功应用,它已成为事实上的网络标准,广泛应用于各种网络主机间的通信。
作为一个面向连接的传输层协议,TCP的目标是为用户提供可靠的端到端连接,保证信息有序无误的传输。它除了提供基本的数据传输功能外,还为保证可靠性采用了数据编号、校验和计算、数据确认等一系列措施。它对传送的每个数据字节都进行编号,并请求接收方回传确认信息(ack)。发送方如果在规定的时间内没有收到数据确认,就重传该数据。数据编号使接收方能够处理数据的失序和重复问题。数据误码问题通过在每个传输的数据段中增加校验和予以解决,接收方在接收到数据后检查校验和,若校验和有误,则丢弃该有误码的数据段,并要求发送方重传。流量控制也是保证可靠性的一个重要措施,若无流控,可能会因接收缓冲区溢出而丢失大量数据,导致许多重传,造成网络拥塞恶性循环。TCP采用可变窗口进行流量控制,由接收方控制发送方发送的数据量。
TCP为用户提供了高可靠性的网络传输服务,但可靠性保障措施也影响了传输效率。因此,在实际工程应用中,只有关键数据的传输才采用TCP,而普通数据的传输一般采用高效率的udp。
二、粘包问题分析与对策
TCP粘包是指发送方发送的若干包数据到接收方接收时粘成一包,从接收缓冲区看,后一包数据的头紧接着前一包数据的尾。
出现粘包现象的原因是多方面的,它既可能由发送方造成,也可能由接收方造成。发送方引起的粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一包数据。若连续几次发送的数据都很少,通常TCP会根据优化算法把这些数据合成一包后一次发送出去,这样接收方就收到了粘包数据。接收方引起的粘包是由于接收方用户进程不及时接收数据,从而导致粘包现象。这是因为接收方先把收到的数据放在系统接收缓冲区,用户进程从该缓冲区取数据,若下一包数据到达时前一包数据尚未被用户进程取走,则下一包数据放到系统接收缓冲区时就接到前一包数据之后,而用户进程根据预先设定的缓冲区大小从系统接收缓冲区取数据,这样就一次取到了多包数据(图1所示)。
图1
图2
图3
粘包情况有两种,一种是粘在一起的包都是完整的数据包(图1、图2所示),另一种情况是粘在一起的包有不完整的包(图3所示),此处假设用户接收缓冲区长度为m个字节。
不是所有的粘包现象都需要处理,若传输的数据为不带结构的连续流数据(如文件传输),则不必把粘连的包分开(简称分包)。但在实际工程应用中,传输的数据一般为带结构的数据,这时就需要做分包处理。
在处理定长结构数据的粘包问题时,分包算法比较简单;在处理不定长结构数据的粘包问题时,分包算法就比较复杂。特别是如图3所示的粘包情况,由于一包数据内容被分在了两个连续的接收包中,处理起来难度较大。实际工程应用中应尽量避免出现粘包现象。
为了避免粘包现象,可采取以下几种措施。一是对于发送方引起的粘包现象,用户可通过编程设置来避免,TCP提供了强制数据立即传送的操作指令push,TCP软件收到该操作指令后,就立即将本段数据发送出去,而不必等待发送缓冲区满;二是对于接收方引起的粘包,则可通过优化程序设计、精简接收进程工作量、提高接收进程优先级等措施,使其及时接收数据,从而尽量避免出现粘包现象;三是由接收方控制,将一包数据按结构字段,人为控制分多次接收,然后合并,通过这种手段来避免粘包。
以上提到的三种措施,都有其不足之处。第一种编程设置方法虽然可以避免发送方引起的粘包,但它关闭了优化算法,降低了网络发送效率,影响应用程序的性能,一般不建议使用。第二种方法只能减少出现粘包的可能性,但并不能完全避免粘包,当发送频率较高时,或由于网络突发可能使某个时间段数据包到达接收方较快,接收方还是有可能来不及接收,从而导致粘包。第三种方法虽然避免了粘包,但应用程序的效率较低,对实时应用的场合不适合。
一种比较周全的对策是:接收方创建一预处理线程,对接收到的数据包进行预处理,将粘连的包分开。对这种方法我们进行了实验,证明是高效可行的。
三、编程与实现
1.实现框架
实验网络通信程序采用TCP/IP协议的socket api编程实现。socket是面向客户机/服务器模型的。TCP实现框架如图4所示。
图4
2.实验硬件环境:
服务器:pentium 350 微机
客户机:pentium 166微机
网络平台:由10兆共享式hub连接而成的局域网
3.实验软件环境:
操作系统:windows 98
编程语言:visual c++ 5.0
4.主要线程
编程采用多线程方式,服务器端共有两个线程:发送数据线程、发送统计显示线程。客户端共有三个线程:接收数据线程、接收预处理粘包线程、接收统计显示线程。其中,发送和接收线程优先级设为thread_priority_time_critical(最高优先级),预处理线程优先级为thread_priority_above_normal(高于普通优先级),显示线程优先级为thread_priority_normal(普通优先级)。
实验发送数据的数据结构如图5所示:
图5
5.分包算法
针对三种不同的粘包现象,分包算法分别采取了相应的解决办法。其基本思路是首先将待处理的接收数据流(长度设为m)强行转换成预定的结构数据形式,并从中取出结构数据长度字段,即图5中的n,而后根据n计算得到第一包数据长度。
1)若n<m,则表明数据流包含多包数据,从其头部截取n个字节存入临时缓冲区,剩余部分数据依此继续循环处理,直至结束。
2)若n=m,则表明数据流内容恰好是一完整结构数据,直接将其存入临时缓冲区即可。
3)若n>m,则表明数据流内容尚不够构成一完整结构数据,需留待与下一包数据合并后再行处理。
对分包算法具体内容及软件实现有兴趣者,可与作者联系。
四、实验结果分析
实验结果如下:
1.在上述实验环境下,当发送方连续发送的若干包数据长度之和小于1500b时,常会出现粘包现象,接收方经预处理线程处理后能正确解开粘在一起的包。若程序中设置了“发送不延迟”:(setsockopt (socket_name,ipproto_tcp,tcp_nodelay,(char *) &on,sizeof on) ,其中on=1),则不存在粘包现象。
2.当发送数据为每包1kb~2kb的不定长数据时,若发送间隔时间小于10ms,偶尔会出现粘包,接收方经预处理线程处理后能正确解开粘在一起的包。
3.为测定处理粘包的时间,发送方依次循环发送长度为1.5kb、1.9kb、1.2kb、1.6kb、1.0kb数据,共计1000包。为制造粘包现象,接收线程每次接收前都等待10ms,接收缓冲区设为5000b,结果接收方收到526包数据,其中长度为5000b的有175包。经预处理线程处理可得到1000包正确数据,粘包处理总时间小于1ms。
实验结果表明,TCP粘包现象确实存在,但可通过接收方的预处理予以解决,而且处理时间非常短(实验中1000包数据总共处理时间不到1ms),几乎不影响应用程序的正常工作。
然后看下netty中是如何解决粘包问题的。
1. frame包整体功能描述
此包主要作用于对TCP/IP数据包的分包和包重组,常用于数据的流传输,是扩展的解码器。
包目录结构如下:

2. 包中各类功能详解
(1) FrameDecoder
抽象类,将ChannelBuffers中的二进制数据转换成有意义的数据帧(frame)对象,一般不直接调用,提供给此包中的FixedLengthFrameDecoder类、DelimiterBasedFrameDecoder类和LengthFieldBasedFrameDecoder类使用,也可以提供给其他类使用(暂不探讨);
在数据传输中,我们发送的数据包如下所示
+-----+-----+-----+
| ABC | DEF | GHI |
+-----+-----+-----+
而实际接收的包的格式为:
+----+-------+---+---+
| AB | CDEFG | H | I |
+----+-------+---+---+
产生的原因为:数据在传输过程中,产生数据包碎片(TCP/IP数据传输时大数据包无法一次传输,被拆分成小数据包,小数据包即为数据包碎片),这就造成了实际接收的数据包和发送的数据包不一致的情况。
而通过FrameDecoder即可实现对上述接收到的数据包的整理,重新还原成如下格式:
+-----+-----+-----+
| ABC | DEF | GHI |
+-----+-----+-----+
如下是一个自定义的Decoder类
public class MyFrameDecoder extends FrameDecoder {
@Override
protected Object decode(ChannelHandlerContext ctx,
ChannelBuffer buf) throws Exception {
// Make sure if the length field was received.
if (buf.readableBytes() < 4) {
// The length field was not received yet - return null.
// This method will be invoked again when more packets are
// received and appended to the buffer.
return null;
}
// The length field is in the buffer.
// Mark the current buffer position before reading the length field
// because the whole frame might not be in the buffer yet.
// We will reset the buffer position to the marked position if
// there's not enough bytes in the buffer.
buf.markReaderIndex();
// Read the length field.
int length = buf.readInt();
// Make sure if there's enough bytes in the buffer.
if (buf.readableBytes() < length) {
// The whole bytes were not received yet - return null.
// This method will be invoked again when more packets are
// received and appended to the buffer.
// Reset to the marked position to read the length field again
// next time.
buf.resetReaderIndex();
return null;
}
// There's enough bytes in the buffer. Read it.
ChannelBuffer frame = buf.readBytes(length);
// Successfully decoded a frame. Return the decoded frame.
return frame;
}
}
此时,我们无需关注数据包是如何重组的,只需要做简单的验证(按照一个包验证)就可以了,FrameDecoder内部实现了组包的机制,不过,此时,需在数据的最前面封装整个数据的长度,示例中数据长度占了四个字节,即前四个字节是数据长度,后面的才是真实的数据。
(2) FixedLengthFrameDecoder
FixedLengthFrameDecoder主要是将诸如
+----+-------+---+---+
| AB | CDEFG | H | I |
+----+-------+---+---+
此类的数据包按照指定的frame长度重新组包,比如确定长度为3,则组包为
+-----+-----+-----+
| ABC | DEF | GHI |
+-----+-----+-----+
构造方法为:new FixedLengthFrameDecoder(int frameLength);
frameLength即修正后的帧长度
另一个构造方法为new FixedLengthFrameDecoder(int frameLength, boolean allocateFullBuffer);
allocateFullBuffer如果为真,则表示初始化的ChannelBuffer大小为frameLength。
(3) Delimiters
分隔符类,DelimiterBasedFrameDecoder类的辅助类。
对Flash XML的socket通信采用nulDelimiter()方法,对于一般的文本采用lineDelimiter()方法
(4) DelimiterBasedFrameDecoder
对接收到的ChannelBuffers按照指定的分隔符Delimiter分隔,分隔符可以是一个或者多个
如将以下数据包按照“\n”分隔:
+--------------+
| ABC\nDEF\r\n |
+--------------+
即为:
+-----+-----+
| ABC | DEF |
+-----+-----+
而如果按照“\r\n”分隔,则为:
+----------+
| ABC\nDEF |
+----------+
对于DelimiterBasedFrameDecoder中的构造方法,其中一些参数说明:
maxFrameLength:解码的帧的最大长度
stripDelimiter:解码时是否去掉分隔符
failFast:为true,当frame长度超过maxFrameLength时立即报TooLongFrameException异常,为false,读取完整个帧再报异常
delimiter:分隔符