HDU 5213 (莫队算法)

本文介绍了一道算法题目,需要找出给定数组中满足特定条件的数对数量。通过对容斥原理的应用和莫队算法的巧妙使用,有效地解决了问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lucky

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 788    Accepted Submission(s): 258


Problem Description
WLD is always very lucky.His secret is a lucky number K.k is a fixed odd number. Now he meets a stranger with N numbers:a1,a2,...,aN.The stranger asks him M questions.Each question is like this:Given two ranges [Li,Ri] and [Ui,Vi],you can choose two numbers X and Y to make aX+aY=K.The X you can choose is between Li and Ri and the Y you can choose is between Ui and Vi.How many pairs of numbers(X,Y) you can choose?
If WLD can answer all the questions correctly,he'll be the luckiest man in the world.Can you help him?
 

Input
There are multiple cases.(At MOST 5)

For each case:

The first line contains an integer N(1N30000).

The following line contains an integer K(2K2N),WLD's lucky number.K is odd.

The following line contains N integers a1,a2,...,aN(1aiN).

The following line contains an integer M(1M30000),the sum of the questions WLD has to answer.

The following M lines,the i-th line contains 4 numbers Li,Ri,Ui,Vi(1LiRi<UiViN),describing the i-th question the stranger asks.
 

Output
For each case:

Print the total of pairs WLD can choose for each question.
 

Sample Input
5 3 1 2 1 2 3 1 1 2 3 5
 

Sample Output
2
Hint
a1+a4=a2+a3=3=K. So we have two pairs of numbers (1,4) and (2,3). Good luck!
 


题意:求某个给定一个数列和k,每次询问两个区间(没有交集)和等于k的二元对数.

假设f(a,b)表示区间a,b中和等于k的二元对数,F(a,b,c,d)表示询问,那么根据容斥原

F(a,b,c,d) = f(a,d)-f(a,c-1)-f(b+1,d)+f(b+1,c-1).然后对于f函数的值很容易用莫队

搞了.所以把每一个F询问都拆成4个f询问,然后就可以用莫队了.

#include <bits/stdc++.h>
using namespace std;
#define maxn 121111

int pos[maxn];
int n, m, k;
long long cnt[maxn];
long long ans[maxn], tmp[maxn];
struct node {
    int l, r, id;
    bool operator < (const node &a) const {
        return pos[l] < pos[a.l] || (pos[l] == pos[a.l] && r < a.r);
    }
    long long ans;
} p[maxn];
int a[maxn];
long long cur;

bool cmp (const node &a, const node &b) {
    return a.id < b.id;
}

void add (int pos) {
    if (k-a[pos] >= 0)
        cur += cnt[k-a[pos]];
    cnt[a[pos]]++;
}

void del (int pos) {
    cnt[a[pos]]--;
    if (k-a[pos] >= 0)
        cur -= cnt[k-a[pos]];
}

int main () {
    //freopen ("in.txt", "r", stdin);
    while (scanf ("%d", &n) == 1) {
        scanf ("%d", &k);
        a[0] = 0;
        for (int i = 1; i <= n; i++) {
            scanf ("%d", &a[i]);
        }
        int block = ceil (sqrt (n*1.0));
        for (int i = 1; i <= n; i++) pos[i] = (i-1)/block;

        scanf ("%d", &m);
        int tot = 0;
        for (int i = 0; i < m; i++) {
            int a, b, c, d;
            scanf ("%d%d%d%d", &a, &b, &c, &d);
            p[tot] = (node) {a, d, tot, 0}; tot++;
            p[tot] = (node) {a, c-1, tot, 0}; tot++;
            p[tot] = (node) {b+1, d, tot, 0}; tot++;
            p[tot] = (node) {b+1, c-1, tot, 0}; tot++;
        }
        sort (p, p+tot);
        int l = 1, r = 1;
        cur = 0;
        memset (cnt, 0, sizeof cnt);
        add (1);
        for (int i = 0; i < tot; i++) {
            if (p[i].l > p[i].r) {
                p[i].ans = 0;
                continue;
            }
            while (r > p[i].r) {
                del (r);
                r--;
            }
            while (r < p[i].r) {
                r++;
                add (r);
            }
            while (l > p[i].l) {
                l--;
                add (l);
            }
            while (l < p[i].l) {
                del (l);
                l++;
            }
            p[i].ans = cur;
        }
        sort (p, p+tot, cmp);
        for (int i = 0; i < m; i++) {
            printf ("%lld\n", p[i<<2].ans-p[(i<<2)+1].ans-p[(i<<2)+2].ans+p[(i<<2)+3].ans);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值