题意是给你100w个点,求面积最大的三角形。
三角形的三个点显然必选是凸包的顶点,先求出凸包。
然后100w个点怎么想都想不出nlgn的算法,然后n^2的居然过了,然后看了下网上的题解居然有n^3过的也是瞎了狗眼。
n^2的可以这么搞,暴力枚举两个点,然后第三个点用旋转卡壳寻找,所以总体复杂度是n^2。
坑爹的是我用了double居然MLE,然后所有的double改成了float就好了。
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
typedef unsigned long long ll;
#define maxn 1111111
#define pi acos (-1)
#define rotate Rotate
const float eps = 1e-8;
int dcmp (float x) {
if (fabs (x) < eps)
return 0;
else return x < 0 ? -1 : 1;
}
struct point {
float x, y;
point (float _x = 0, float _y = 0) : x(_x), y(_y) {}
point operator - (point a) const {
return point (x-a.x, y-a.y);
}
point operator + (point a) const {
return point (x+a.x, y+a.y);
}
bool operator < (const point &a) const {
return x < a.x || (x == a.x && y < a.y);
}
bool operator == (const point &a) const {
return dcmp (x-a.x) == 0 && dcmp (y-a.y) == 0;
}
};
point operator * (point a, float p) {
return point (a.x*p, a.y*p);
}
float cross (point a, point b) {
return (float)a.x*b.y-(float)a.y*b.x;
}
float dot (point a, point b) {
return a.x*b.x + a.y*b.y;
}
int n, m, tot;
point p[maxn], ch[maxn];
int ConvexHull () {
sort (p, p+n);
int m = 0;
for (int i = 0; i < n; i++) {
while (m > 1 && cross (ch[m-1]-ch[m-2], p[i]-ch[m-1]) <= 0)
m--;
ch[m++] = p[i];
}
int k = m;
for (int i = n-2; i >= 0; i--) {
while (m > k && cross (ch[m-1]-ch[m-2], p[i]-ch[m-1]) <= 0)
m--;
ch[m++] = p[i];
}
if (n > 1)
m--;
return m;
}
float rotate_calipers () {
if (m == 1 || m == 2)
return 0;
float ans = 0;
int cur = 1;
for (int add = 1; add < m; add++) {
for (int i = 0; i < m; i++) {
while (cross (ch[i]-ch[(i+add)%m], ch[(cur+1)%m]-ch[cur]) < 0)
cur = (cur+1)%m;
float res = max (cross (ch[(i+add)%m]-ch[i], ch[cur]-ch[i]), cross (ch[(i+add)%m]-ch[i], ch[(cur+1)%m]-ch[i]));
ans = max (ans, res);
}
}
return ans/2.0;
}
int main () {
//freopen ("in", "r", stdin);
while (scanf ("%d", &n) == 1 ) {
for (int i = 0; i < n; i++) {
scanf ("%f%f", &p[i].x, &p[i].y);
}
m = ConvexHull ();
printf ("%.2f\n", rotate_calipers ());
}
return 0;
}