022 Generate Parentheses

本文介绍了一种使用全排列思想生成有效括号组合的算法。通过递归方式构建括号序列,并利用栈检查括号的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

For example, given n = 3, a solution set is:

[
  "((()))",
  "(()())",
  "(())()",
  "()(())",
  "()()()"
]

我的解法很复杂,不知道怎么搞的,其实思路很简单,使用的是全排序思想,一个位置上只有两种状态,然后使用经典的方法就行



        public List<String> generateParenthesis(int n) {

		LinkedList<Character> result=new LinkedList<>();
		Set<String> set=new HashSet<>();
		List<String> list=new ArrayList<>();
		generateLoop(n,n,result,set);
		for (String string : set) {
			list.add(string);
		}
		return list;
	}
	
	public void generateLoop(int r,int l,LinkedList<Character> result,Set<String> list){
		if(r==0||l==0){
			if(l==0){
				checkStack(result,r,list);
			}
			return;
		}
		result.push('(');
		l=l-1;
		generateLoop(r, l, result, list);
		
		result.pop();
		l=l+1;
		result.push(')');
		r=r-1;
		generateLoop(r, l, result, list);
		result.pop();
		r=r+1;
	}

	private void checkStack(LinkedList<Character> result, int r,Set<String> list) {
		String str="";
		for(int i=0;i<result.size();i++)str+=result.get(i);
		for(int i=0;i<r;i++)str+=")";
		LinkedList<Character> reserve=new LinkedList<>();
		for(int i=0;i<str.length();i++){
			if(str.charAt(i)=='('){
				reserve.push(str.charAt(i));
			}else{
				if(reserve.isEmpty()){
					return;
				}
				if(reserve.pop()!='(')return;
			}
		}
		list.add(str);
		
	}




#include <cassert> /// for assert #include <iostream> /// for I/O operation #include <vector> /// for vector container /** * @brief Backtracking algorithms * @namespace backtracking */ namespace backtracking { /** * @brief generate_parentheses class */ class generate_parentheses { private: std::vector<std::string> res; ///< Contains all possible valid patterns void makeStrings(std::string str, int n, int closed, int open); public: std::vector<std::string> generate(int n); }; /** * @brief function that adds parenthesis to the string. * * @param str string build during backtracking * @param n number of pairs of parentheses * @param closed number of closed parentheses * @param open number of open parentheses */ void generate_parentheses::makeStrings(std::string str, int n, int closed, int open) { if (closed > open) // We can never have more closed than open return; if ((str.length() == 2 * n) && (closed != open)) { // closed and open must be the same return; } if (str.length() == 2 * n) { res.push_back(str); return; } makeStrings(str + ')', n, closed + 1, open); makeStrings(str + '(', n, closed, open + 1); } /** * @brief wrapper interface * * @param n number of pairs of parentheses * @return all well-formed pattern of parentheses */ std::vector<std::string> generate_parentheses::generate(int n) { backtracking::generate_parentheses::res.clear(); std::string str = "("; generate_parentheses::makeStrings(str, n, 0, 1); return res; } } // namespace backtracking /** * @brief Self-test implementations * @returns void */ static void test() { int n = 0; std::vector<std::string> patterns; backtracking::generate_parentheses p; n = 1; patterns = {{"()"}}; assert(p.generate(n) == patterns); n = 3; patterns = {{"()()()"}, {"()(())"}, {"(())()"}, {"(()())"}, {"((()))"}}; assert(p.generate(n) == patterns); n = 4; patterns = {{"()()()()"}, {"()()(())"}, {"()(())()"}, {"()(()())"}, {"()((()))"}, {"(())()()"}, {"(())(())"}, {"(()())()"}, {"(()()())"}, {"(()(()))"}, {"((()))()"}, {"((())())"}, {"((()()))"}, {"(((())))"}}; assert(p.generate(n) == patterns); std::cout << "All tests passed\n"; } /** * @brief Main function * @returns 0 on exit */ int main() { test(); // run self-test implementations return 0; } 解释一下这段代码?
最新发布
03-08
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值