Given a pair of positive integers, for example, 6 and 110, can this equation 6 = 110 be true? The answer is "yes", if 6 is a decimal number and 110 is a binary number.
Now for any pair of positive integers N1 and N2, your task is to find the radix of one number while that of the other is given.
Input Specification:
Each input file contains one test case. Each case occupies a line which contains 4 positive integers:
N1 N2 tag radix
Here N1 and N2 each has no more than 10 digits. A digit is less than its radix and is chosen from the set {0-9, a-z} where 0-9 represent the decimal numbers 0-9, and a-z represent the decimal numbers 10-35. The last number "radix" is the radix of N1 if "tag" is 1, or of N2 if "tag" is 2.
Output Specification:
For each test case, print in one line the radix of the other number so that the equation N1 = N2 is true. If the equation is impossible, print "Impossible". If the solution is not unique, output the smallest possible radix.
Sample Input 1:6 110 1 10Sample Output 1:
2Sample Input 2:
1 ab 1 2Sample Output 2:
Impossible
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <iostream>
using namespace std;
typedef long long LL;
LL Map[256];
LL inf = (1LL << 63) - 1;
void init() {
for (char c = '0'; c <= '9'; c++)
Map[c] = c - '0';
for (char c = 'a'; c <= 'z'; c++)
Map[c] = c - 'a' + 10;
}
LL convert10(char a[], LL radix, LL t) {
LL ans = 0;
int l = strlen(a);
for (int i = 0; i < l; i++) {
ans = ans*radix + Map[a[i]];
if (ans<0 || ans>t) return -1;
}
return ans;
}
int cmp(char N2[], LL radix, LL t) {
int len = strlen(N2);
LL num = convert10(N2, radix, t);
if (num < 0) return 1;
if (t > num) return -1;
else if (t == num) return 0;
else return 1;
}
int bs(char N2[], LL left, LL right, LL t) {
LL mid;
while (left <= right) {
mid = (left + right) / 2;
int flag = cmp(N2, mid, t);
if (flag == 0) return mid;
else if (flag == -1) left = mid + 1;
else right = mid - 1;
}
return -1;
}
int findla(char N2[]) {
int ans = -1, len = strlen(N2);
for (int i = 0; i < len; i++) {
if (Map[N2[i]] > ans)
ans = Map[N2[i]];
}
return ans + 1;
}
char N1[20], N2[20], temp[20];
int tag, radix;
int main(){
init();
scanf("%s %s %d %d", N1, N2, &tag, &radix);
if (tag == 2) {
strcpy(temp, N1);
strcpy(N1, N2);
strcpy(N2, temp);
}
LL t = convert10(N1, radix, inf);
LL low = findla(N2);
LL high = max(low, t) + 1;
LL ans = bs(N2, low, high, t);
if (ans == -1) printf("Impossible\n");
else printf("%lld", ans);
return 0;
}
本文探讨了如何解决两个正整数在不同进制下相等的问题,通过基数转换和二分查找算法来寻找合适的进制,实现N1=N2的方程求解。
389

被折叠的 条评论
为什么被折叠?



