A gas station has to be built at such a location that the minimum distance between the station and any of the residential housing is as far away as possible. However it must guarantee that all the houses are in its service range.
Now given the map of the city and several candidate locations for the gas station, you are supposed to give the best recommendation. If there are more than one solution, output the one with the smallest average distance to all the houses. If such a solution is still not unique, output the one with the smallest index number.
Input Specification:
Each input file contains one test case. For each case, the first line contains 4 positive integers: N (≤103), the total number of houses; M (≤10), the total number of the candidate locations for the gas stations; K (≤104), the number of roads connecting the houses and the gas stations; and DS, the maximum service range of the gas station. It is hence assumed that all the houses are numbered from 1 to N, and all the candidate locations are numbered from G1 to GM.
Then K lines follow, each describes a road in the format
P1 P2 Dist
where P1 and P2 are the two ends of a road which can be either house numbers or gas station numbers, and Dist is the integer length of the road.
Output Specification:
For each test case, print in the first line the index number of the best location. In the next line, print the minimum and the average distances between the solution and all the houses. The numbers in a line must be separated by a space and be accurate up to 1 decimal place. If the solution does not exist, simply output No Solution.
Sample Input 1:
4 3 11 5
1 2 2
1 4 2
1 G1 4
1 G2 3
2 3 2
2 G2 1
3 4 2
3 G3 2
4 G1 3
G2 G1 1
G3 G2 2
Sample Output 1:
G1
2.0 3.3
Sample Input 2:
2 1 2 10
1 G1 9
2 G1 20
Sample Output 2:
No Solution
#include<iostream>
#include<queue>
#include<map>
#include<string>
#include<cstring>
#include <algorithm>
using namespace std;
const int maxn = 1050;
const int INF = 100000000;
int n, m,k,ds,l,a1,a2;
int d[maxn], edge[maxn][maxn];
string c1, c2;
bool vist[maxn] = { false };
struct node {
int num;
double d;
double avg;
bool f;
}gas[maxn];
void dijkstra(int s) {
memset(vist, false, sizeof(vist));
fill(d, d + maxn, INF);
d[s] = 0;
for (int i = 0; i < n+m; i++) {
int u = -1,min = INF;
for (int j = 1; j <=n+m; j++) {
if (!vist[j] && d[j] < min) {
min = d[j];
u = j;
}
}
if (u == -1) return;
vist[u] = true;
for (int v = 1; v <=n+m; v++) {
if (!vist[v] && edge[u][v] != INF) {
if (d[v] > d[u] + edge[u][v]) {
d[v] = d[u] + edge[u][v];
}
}
}
}
}
bool cmp(node a, node b) {
if (a.f != b.f) return a.f > b.f;
else if (a.d!=b.d) return a.d>b.d;
else if (a.avg!=b.avg) return a.avg<b.avg;
else return a.num<b.num;
}
int main() {
scanf("%d%d%d%d", &n, &m, &k, &ds);
fill(edge[0], edge[0] + maxn * maxn, INF);
for (int i = 0; i < k; i++) {
cin >> c1 >> c2 >> l;
a1 = 0, a2 = 0;
if (c1[0] == 'G') {
for (int i = 1; i <c1.size(); i++)
a1 = a1 * 10 + (c1[i]-'0');
a1 += n;
}
else a1 = atoi(c1.c_str());
if (c2[0] == 'G') {
for (int i = 1; i <c2.size(); i++)
a2 = a2 * 10 + (c2[i] - '0');
a2 += n;
}
else a2 = atoi(c2.c_str());
//cout << a1 << " " << a2 << endl;
edge[a1][a2] = l;
edge[a2][a1] = l;
}
/*for (int i = 1; i <=n + m; i++) {
for (int j = 1; j <=n + m; j++)
cout << edge[i][j] << " ";
printf("\n");
}*/
for (int i = 1; i <= m; i++) {
bool f = true;
dijkstra(n+i);
//cout << d[1] << " " << d[2] << " " << d[3] << " " << d[4] << endl;
int min =INF,sum=0;
for (int j = 1; j <= n; j++) {
if (d[j] > ds) f = false;
if (d[j]<min) {
min = d[j];
}
sum += d[j];
}
//cout << min << " " << sum << endl;
gas[i].f = f;
gas[i].num = i;
gas[i].avg = 1.0*sum / n;
gas[i].d = 1.0*min;
}
sort(gas + 1, gas + m + 1, cmp);
if(gas[1].f) printf("%c%d\n%.1f %.1f", 'G',gas[1].num,gas[1].d, gas[1].avg);
else printf("No Solution");
return 0;
}
本文介绍了一种算法,用于在城市地图上寻找最佳的加油站位置,确保所有住宅区都在其服务范围内,同时使得平均距离最短。算法通过计算候选地点到各住宅区的距离,选择满足条件的最优解。
876

被折叠的 条评论
为什么被折叠?



