Bi-shoe and Phi-shoe(欧拉函数)

本篇介绍了一个关于竹竿跳高的趣味算法问题,通过购买不同长度的竹竿来满足学生们的幸运数字需求,利用欧拉函数计算竹竿得分,并采用质数筛选法寻找最优解。

A - Bi-shoe and Phi-shoe
Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Description

Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of Bamboos of all possible integer lengths (yes!) are available in the market. According to Xzhila tradition,

Score of a bamboo = Φ (bamboo's length)

(Xzhilans are really fond of number theory). For your information, Φ (n) = numbers less than n which are relatively prime (having no common divisor other than 1) to n. So, score of a bamboo of length 9 is 6 as 1, 2, 4, 5, 7, 8 are relatively prime to 9.

The assistant Bi-shoe has to buy one bamboo for each student. As a twist, each pole-vault student of Phi-shoe has a lucky number. Bi-shoe wants to buy bamboos such that each of them gets a bamboo with a score greater than or equal to his/her lucky number. Bi-shoe wants to minimize the total amount of money spent for buying the bamboos. One unit of bamboo costs 1 Xukha. Help him.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 10000) denoting the number of students of Phi-shoe. The next line contains n space separated integers denoting the lucky numbers for the students. Each lucky number will lie in the range [1, 106].

Output

For each case, print the case number and the minimum possible money spent for buying the bamboos. See the samples for details.

Sample Input

3

5

1 2 3 4 5

6

10 11 12 13 14 15

2

1 1

Sample Output

Case 1: 22 Xukha

Case 2: 88 Xukha

Case 3: 4 Xukha


题目链接:http://www.bnuoj.com/bnuoj/problem_show.php?pid=13288


被这个题目最后的输出格式气得半天,__int64输出用lld输出才AC,用I64d不行。

欧拉函数定义:比他小的并与他互质的个数之和。

题意给你n个luky数字是欧拉函数的值。也就是个数,求和最小,我就想应该是比这个数大的质数就肯定是最小的,这样先把所有质数枚举出来就好办了。用到了素数筛选法。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <queue>
#include <map>
#include <stack>
#include <list>
#include <vector>
#include <ctime>
#define LL __int64
#define eps 1e-8
#define pi acos(-1)
using namespace std;
int a[1010010];
int p[100000];
void INIT(){
	memset(a,0,sizeof(a));
	memset(p,0,sizeof(p));
	int t=0;
	for (int i=2;i<=1010000;i++){
		if (a[i]==0)
			p[++t]=i;
		for (int j=1,k;j<=t && ((k=i*p[j])<=1010000);j++)
		{
			a[k]=1;
			if (i % p[j]==0) break; 
		} 
	}
	t=1;
	for (int i=1;i<=1000001;i++){
		if (i<p[t]) a[i]=p[t];
		else {
			t++;
			a[i]=p[t];
		}
	}
}
int main(){
	INIT();
	int T;
	//freopen("in.txt","r",stdin);
	//fropen("out.txt","w",stdout)
	scanf("%d",&T);
	for (int cas=1;cas<=T;cas++){
		int n,k;
		scanf("%d",&n);
		LL ans=0;
		for(int i=1;i<=n;i++){
			scanf("%d",&k);
			ans+=a[k];
		}
		printf("Case %d: %lld Xukha\n",cas,ans);
	}
	return 0;
}


xtu-oj平台上有关于欧拉函数的题目,如XTU-OJ 1355 - Euler‘s Totient Function 。对于该题的解题思路,是通过欧拉筛法来计算欧拉函数值。代码中先定义了一个布尔类型数组`vis`用于标记合数,`prime`数组用于存放素数,`phi`数组用于存放欧拉函数值。在`oula`函数中,当`i`为素数时,其欧拉函数值`phi[i]`为`i - 1`;对于`i * prime[j]`,若`i`不是`prime[j]`的倍数,`phi[i * prime[j]]`为`phi[i] * phi[prime[j]]`,若`i`是`prime[j]`的倍数,`phi[i * prime[j]]`为`phi[i] * prime[j]`。最后通过前缀和的方式,方便后续计算区间`[a, b]`内欧拉函数值的和,即`phi[b] - phi[a - 1]` [^2]。 还有一道关于欧拉函数的题目,代码给出了其解题思路。该代码不断读取输入的`n`,当`n`为 0 时程序结束。对于输入的`n`,若`n`为 1,输出 0;若`n`不为 1,先令`res`等于`n`,`temp`也等于`n`,然后从 2 到`n / i`遍历,若`temp`能被`i`整除,更新`res`为`res / i * (i - 1)`,并将`temp`中`i`的因子除尽。最后若`temp`大于 1,说明`temp`本身是一个大于`n / i`的素因子,更新`res`为`res / temp * (temp - 1)`,最后输出`res` [^3]。 ```c // XTU-OJ 1355 - Euler‘s Totient Function 代码 #include <stdio.h> int T,a,b; const int MAXN = 3e6+5; bool vis[MAXN]; // 筛选MAXN个素数 int prime[MAXN]; // 把素数依次存放在该数组中 __int64 phi[MAXN] = {0,1}; void oula() { for (int i = 2; i < MAXN; i ++) { if ( !vis[i]) { prime[++prime[0]] = i; // prime[0] --> 筛选出的素数个数 phi[i] = i-1; // 素数i的 ϕ(i) = i-1; } for (int j = 1; j <= prime[0] && i <= MAXN/prime[j]; j ++) { vis[i*prime[j]] = 1; // 素数prime[j]的i倍为 合数 phi[i*prime[j]] = phi[i]*phi[prime[j]]; if (i % prime[j] == 0) { phi[i*prime[j]] = phi[i]*prime[j]; break; } } } for (int i = 1; i <= 3e6; i ++) phi[i] += phi[i-1]; } int main() { oula(); scanf("%d",&T); while ( T --) { scanf("%d %d",&a,&b); printf("%I64d\n",phi[b]-phi[a-1]); } return 0; } // 另一道关于欧拉函数题目的代码 #include<stdio.h> #define ll long long ll n,res,temp; int main(){ while(~scanf("%lld",&n)){ if(n==0) return 0; if(n==1) printf("0\n"); else{ res=n; temp=n; for(ll i=2;i<=n/i;i++){ if(temp%i==0){ res=res/i*(i-1); while(temp%i==0){ temp/=i; } } } if(temp>1) res=res/temp*(temp-1); printf("%lld\n",res); } } return 0; } ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值