题目:计算最小生成树的kruskal算法,有两种途径,方法一是我们常用的不断的把边加到目标集合上。
方法二是从图中不断的删边,最后剩下的就是所求集合。
分析:最小生成树。利用kruskal算法的方法一,求剩下的边就是删掉的边,即为所求。
注意:数组别开小了,特别是并查集的。
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
typedef struct d_node
{
int point1;
int point2;
int weight;
}enode;
enode edge[25005];
//union_set
int sets[1001];
int rank[1001];
void set_inital( int a, int b )
{
for ( int i = a ; i <= b ; ++ i ) {
rank[i] = 0;
sets[i] = i;
}
}
int set_find( int a )
{
if ( a != sets[a] )
sets[a] = set_find( sets[a] );
return sets[a];
}
void set_union( int a, int b )
{
if ( rank[a] < rank[b] )
sets[a] = b;
else {
if ( rank[a] == rank[b] )
rank[a] ++;
sets[b] = a;
}
}
//end_union_set
int cmp_e( enode a, enode b )
{
return a.weight < b.weight;
}
int kruskal( int n, int m )
{
sort( edge, edge+m, cmp_e );
set_inital( 0, n );
int sum = 0;
for ( int i = 0 ; i < m ; ++ i ) {
int A = set_find( edge[i].point1 );
int B = set_find( edge[i].point2 );
if ( A != B )
set_union( A, B );
else {
if ( sum ++ ) printf(" ");
printf("%d",edge[i].weight);
}
}
return sum;
}
int main()
{
int n,m,a,b,c;
while ( scanf("%d%d",&n,&m) && n+m ) {
for ( int i = 0 ; i < m ; ++ i ) {
scanf("%d%d%d",&a,&b,&c);
edge[i].point1 = a;
edge[i].point2 = b;
edge[i].weight = c;
}
if ( !kruskal( n, m ) )
printf("forest");
printf("\n");
}
return 0;
}