结论
torch.FloatTensor()默认生成32位浮点数,dtype 为 torch.float32 或 torch.float
验证
>>> tensor = torch.FloatTensor([[1,2],[3,4]])
>>> print tensor
tensor([[1., 2.],
[3., 4.]])
>>> print tensor.dtype
torch.float32
官网各类tensor对应数据类型如下:
https://pytorch.org/docs/stable/tensors.html?highlight=torch%20floattensor
| Data type | dtype | CPU tensor | GPU tensor |
|---|---|---|---|
| 32-bit floating point |
|
|
|
| 64-bit floating point |
|
|
|
| 16-bit floating point 1 |
|
|
|
| 16-bit floating point 2 |
|
|
|
| 32-bit complex |
| ||
| 64-bit complex |
| ||
| 128-bit complex |
| ||
| 8-bit integer (unsigned) |
|
|
|
| 8-bit integer (signed) |
|
|
|
| 16-bit integer (signed) |
|
|
|
| 32-bit integer (signed) |
|
|
|
| 64-bit integer (signed) |
|
|
|
| Boolean |
|
|
|
| quantized 8-bit integer (unsigned) |
|
| / |
| quantized 8-bit integer (signed) |
|
| / |
| quantized 32-bit integer (signed) |
|
| / |
| quantized 4-bit integer (unsigned) 3 |
|
| / |
该博客介绍了PyTorch中torch.FloatTensor()创建的张量数据类型,默认为32位浮点数,并提供了官网链接以查阅更多张量对应的数据类型。
368

被折叠的 条评论
为什么被折叠?



