torch.FloatTensor()生成的数据类型dtype大小

该博客介绍了PyTorch中torch.FloatTensor()创建的张量数据类型,默认为32位浮点数,并提供了官网链接以查阅更多张量对应的数据类型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

结论

torch.FloatTensor()默认生成32位浮点数,dtype 为 torch.float32 或 torch.float

验证

     >>> tensor = torch.FloatTensor([[1,2],[3,4]])
     >>> print tensor
             tensor([[1., 2.],
             [3., 4.]])
     >>> print tensor.dtype    
             torch.float32

官网各类tensor对应数据类型如下:

https://pytorch.org/docs/stable/tensors.html?highlight=torch%20floattensor

Data type

dtype

CPU tensor

GPU tensor

32-bit floating point

torch.float32 or torch.float

torch.FloatTensor

torch.cuda.FloatTensor

64

pytorch部分代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s # self.weight = weight if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) # 0,1 batch_m = batch_m.view((x.size(0), 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) # return F.cross_entropy(self.s*output, target, weight=self.weight) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device, non_blocking=True), Variable(target).to(device,non_blocking=True) # 3、将数据输入mixup_fn生成mixup数据 samples, targets = mixup_fn(data, target) # 4、将上一步生成的数据输入model,输出预测结果,再计算loss output = model(samples) # 5、梯度清零(将loss关于weight的导数变成0) optimizer.zero_grad() loss = criterion_train(output, targets) # 6、若使用混合精度 if use_amp: with torch.cuda.amp.autocast(): # 开启混合精度 # loss = torch.nan_to_num(criterion_train(output, target_a, target_b, lam)) # 计算loss # loss = lam * criterion_train(output, target_a) + (1 - lam) * criterion_train(output, target_b) # 计算 mixup 后的损失函数 scaler.scale(loss).backward() # 梯度放大 torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) # 梯度裁剪,防止梯度爆炸 scaler.step(optimizer) # 更新下一次迭代的scaler scaler.update() # 否则,直接反向传播求梯度 else: # loss = criterion_train(output, targets) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) optimizer.step() 报错:) File "/home/adminis/hpy/ConvNextV2_Demo/models/losses.py", line 48, in forward output = torch.where(index, x_m, x) RuntimeError: expected scalar type float but found c10::Half
05-30
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值