洛谷-3871 GCDEX - GCD Extreme

本文介绍了一种高效算法,用于解决特定数学问题:计算从1到n的所有数对(i, j)的GCD(最大公约数)之和,其中1<=i<j<=n。算法通过将问题转化为求解每个数的GCD贡献,利用埃氏筛法预处理欧拉函数φ值,从而达到线性时间复杂度。

题目描述
给出n,求所有gcd(i,j)之和,其中1<=i<j<=n. 不超过20000组数据,n<=1000000.
输入格式
The input file contains at most 20000 lines of inputs. Each line contains an integer N (1 < N < 1000001). The meaning of N is given in the problem statement. Input is terminated by a line containing a single zero.
输出格式
For each line of input produce one line of output. This line contains the value of G for the corresponding N. The value of G will fit in a 64-bit signed integer.

输入输出样例
输入 #1 复制
10
100
200000
0

输出 #1 复制
67
13015
143295493160

不同数据范围不同算法,这里只有n,那么
g(n)=∑i=1n−1gcd(i,n)g(n)=\sum_{i=1}^{n-1}{\rm gcd}(i,n)g(n)=i=1n1gcd(i,n)
那么答案就是:
∑i=1ng(n)\sum_{i=1}^{n}g(n)i=1ng(n)
现在我们逐步化简:
g(n)=∑i=1n−1gcd(i,n)=∑d∣nd×∑i=1n−1[gcd(i,n)=d]=∑d∣nd×∑i=1nd−1[gcd(i,nd)=1]=∑d∣nd×φ(nd)\begin{aligned}g(n)&amp;=\sum_{i=1}^{n-1}{\rm gcd}(i,n)\\&amp;=\sum_{d|n}d\times\sum_{i=1}^{n-1}[{\rm gcd}(i,n)=d]\\&amp;=\sum_{d|n}d\times\sum_{i=1}^{\frac{n}{d}-1}[{\rm gcd}(i,\frac{n}{d})=1]\\&amp;=\sum_{d|n}d\times\varphi\left(\frac{n}{d}\right)\end{aligned}g(n)=i=1n1gcd(i,n)=dnd×i=1n1[gcd(i,n)=d]=dnd×i=1dn1[gcd(i,dn)=1]=dnd×φ(dn)
再埃氏筛一下就好了

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cstdio>
#include<vector>
#include<string>
#include<queue>
#include<stack>
#include<cmath>
#include<map>
#include<set>
using namespace std;
const int inf=0x7fffffff;
const double eps=1e-10;
const double pi=acos(-1.0);
inline int read(){
    int x=0,f=1;char ch;ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-') f=0;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch&15);ch=getchar();}
    if(f)return x;else return -x;
}
const int N=1000010; 
bool vis[N];
long long prim[N],phi[N],ans[N];
void get_phi(int n){
	phi[1]=0;
  	for(int i=2;i<=n;i++){
    	if(!vis[i]){phi[i]=i-1;prim[++prim[0]]=i;}
    	for(int j=1;j<=prim[0]&&i*prim[j]<=n;j++){
      		vis[i*prim[j]]=1;
      		if(i%prim[j]==0){phi[i*prim[j]]=phi[i]*prim[j];break;}
      		else phi[i*prim[j]]=phi[i]*(prim[j]-1);
    	}
  	}
	for(int i=1;i<=n;i++)ans[i]=phi[i];
	for(int i=2;i*i<=n;i++){
		ans[i*i]+=phi[i]*i;
    	for(int j=i+1;j*i<=n;j++)
    		ans[j*i]+=phi[i]*j+phi[j]*i;
  	}
	ans[1]=0;
	for(int i=2;i<=n;i++)ans[i]+=ans[i-1];
}
int n;
int main(){
	get_phi(1000000);
	while(scanf("%d",&n)==1&&n){printf("%lld\n",ans[n]);}
    return 0;
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值