bi-linear interpolation

博客提供了一个Geocomputation相关网页链接,网址为http://www.geocomputation.org/1999/082/gc_082.htm 。
好的,下面是一个使用Python和PyTorch库来实现Bi-LSTM网络进行训练和测试的示例代码。该代码会读取CSV文件,训练Bi-LSTM模型,并计算F1值和绘制混淆矩阵。 首先,确保你已经安装了必要的库: ```bash pip install pandas torch scikit-learn matplotlib ``` 然后,使用以下代码: ```python import pandas as pd import torch import torch.nn as nn import torch.optim as optim from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score, confusion_matrix import matplotlib.pyplot as plt import numpy as np # 读取CSV文件 data = pd.read_csv('your_file.csv') # 假设第一列是text,第二列是label texts = data.iloc[:, 0].values labels = data.iloc[:, 1].values # 文本向量化(这里使用简单的词袋模型) from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer() X = vectorizer.fit_transform(texts).toarray() # 将标签转换为Tensor y = torch.tensor(labels, dtype=torch.float32) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 将数据转换为Tensor X_train = torch.tensor(X_train, dtype=torch.float32) X_test = torch.tensor(X_test, dtype=torch.float32) # 定义Bi-LSTM模型 class BiLSTM(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(BiLSTM, self).__init__() self.hidden_dim = hidden_dim self.lstm = nn.LSTM(input_dim, hidden_dim, bidirectional=True, batch_first=True) self.fc = nn.Linear(hidden_dim * 2, output_dim) def forward(self, x): h0 = torch.zeros(2, x.size(0), self.hidden_dim).to(x.device) # 2 for bidirection c0 = torch.zeros(2, x.size(0), self.hidden_dim).to(x.device) out, _ = self.lstm(x.unsqueeze(1), (h0, c0)) out = self.fc(out[:, -1, :]) return out # 初始化模型、损失函数和优化器 input_dim = X_train.shape[1] hidden_dim = 64 output_dim = 1 model = BiLSTM(input_dim, hidden_dim, output_dim) criterion = nn.BCEWithLogitsLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): model.train() optimizer.zero_grad() outputs = model(X_train) loss = criterion(outputs.squeeze(), y_train) loss.backward() optimizer.step() print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}') # 测试模型 model.eval() with torch.no_grad(): y_pred = model(X_test) y_pred = torch.sigmoid(y_pred) y_pred = (y_pred > 0.5).float().squeeze() # 计算F1值 f1 = f1_score(y_test, y_pred) print(f'F1 Score: {f1:.4f}') # 绘制混淆矩阵 cm = confusion_matrix(y_test, y_pred) plt.figure(figsize=(10, 7)) plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) plt.title('Confusion Matrix') plt.colorbar() tick_marks = np.arange(2) plt.xticks(tick_marks, ['0', '1'], rotation=45) plt.yticks(tick_marks, ['0', '1']) thresh = cm.max() / 2. for i, j in np.ndindex(cm.shape): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') plt.show() ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值