[CUDA] cuda编程实践

cuda编程实战

1. cuda 理论介绍

1.1 cuda中的一些概念

  • SP(streaming Processor):是Nividia GPU硬件概念,可能对应的是线程束的执行单元
  • SM(Streaming Multiprocessor): 包含多个SP, 一个SM 会根据其内部SP数目分配warp,但是SM 不见得会一次就把这个warp 的所有指令都执行完;当遇到正在执行的warp 需要等待的时候(例如存取global memory 就会要等好一段时间),就切换到别的warp来继续做运算,借此避免为了等待而浪费时间。所以理论上效率最好的状况,就是在SM 中有够多的warp 可以切换,让在执行的时候,不会有「所有warp 都要等待」的情形发生;因为当所有的warp 都要等待时,就会变成SM 无事可做的状况了。
    • 一个SM中有warp scheduler且每个SM中可以同时执行多个warp线程束,一个warp有32个thread
    • 而在block 的方面,一个SM 可以处理多个线程块block,当其中有block 的所有thread 都处理完后,他就会再去找其他还没处理的block 来处理
  • 但是一个block应该不会同时在多个SM上执行,因为要共享shared memory,且因为grid 包含多个block,如果grid过小,可能存在空闲SM的情况,导致硬件使用率过低
  • 一个kenerl函数是怎么执行的:一个kernel程式会有一个grid,grid底下又有数个block,每个block是一个thread群组。在同一个block中thread可以通过共享内存(shared memory)来通信,同步。而不同block之间的thread是无法通信的
  • CUDA的设备在实际执行过程中,会以block为单位。把一个个block分配给SM进行运算;而block中的thread又会以warp(线程束)为单位,对thread进行分组计算。目前CUDA的warp大小都是32,也就是说32个thread会被组成一个warp来一起执行。同一个warp中的thread执行的指令是相同的,只是处理的数据不同。
  • 为了减少硬件资源浪费,最好设置block size是32的倍数

1.2 一些参考文档和关键知识点

reference

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值