1314. 矩阵区域和
给你一个 m x n 的矩阵 mat 和一个整数 k ,请你返回一个矩阵 answer ,其中每个 answer[i][j] 是所有满足下述条件的元素 mat[r][c] 的和:
i - k <= r <= i + k,
j - k <= c <= j + k 且
(r, c) 在矩阵内。
示例 1:
输入:mat = [[1,2,3],[4,5,6],[7,8,9]], k = 1
输出:[[12,21,16],[27,45,33],[24,39,28]]
示例 2:
输入:mat = [[1,2,3],[4,5,6],[7,8,9]], k = 2
输出:[[45,45,45],[45,45,45],[45,45,45]]
提示:
m == mat.length
n == mat[i].length
1 <= m, n, k <= 100
1 <= mat[i][j] <= 100
思路
使用二维前缀和
(为了节省空间,后续还在mat上写了答案)
class Solution {
public int n;
public int m;
public int[][] p;
public int getSum(int r,int c,int k){
int A = p[Math.min(m-1,r+k)][Math.min(n-1,c+k)];
int B = c-k-1<0?0:p[Math.min(m-1,r+k)][c-k-1];
int C = r-k-1<0?0:p[r-k-1][Math.min(n-1,c+k)];
int D = c-k-1<0||r-k-1<0?0:p[r-k-1][c-k-1];
return A-B-C+D;
}
public int[][] matrixBlockSum(int[][] mat, int k) {
this.m=mat.length;
this.n=mat[0].length;
// int[][] result = new int[m][n];
p = new int[m][n];
p[0][0]=mat[0][0];
for(int j = 1;j<n;j++){
p[0][j] = p[0][j-1]+mat[0][j];
}
for(int i = 1;i<m;i++){
p[i][0]=p[i-1][0]+mat[i][0];
for(int j = 1;j<n;j++){
p[i][j]=p[i][j-1]+mat[i][j]+p[i-1][j]-p[i-1][j-1];
}
}
for(int i = 0;i<m;i++){
for(int j = 0;j<n;j++){
mat[i][j] = getSum(i,j,k);
}
}
return mat;
}
}
我这个边界处理的还是太拉了~0的那边如果再扩充一行一列会更方便
官解就十分优雅
class Solution {
public:
int get(const vector<vector<int>>& pre, int m, int n, int x, int y) {
x = max(min(x, m), 0);
y = max(min(y, n), 0);
return pre[x][y];
}
vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int K) {
int m = mat.size(), n = mat[0].size();
vector<vector<int>> P(m + 1, vector<int>(n + 1));
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
P[i][j] = P[i - 1][j] + P[i][j - 1] - P[i - 1][j - 1] + mat[i - 1][j - 1];
}
}
vector<vector<int>> ans(m, vector<int>(n));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
ans[i][j] = get(P, m, n, i + K + 1, j + K + 1) - get(P, m, n, i - K, j + K + 1) - get(P, m, n, i + K + 1, j - K) + get(P, m, n, i - K, j - K);
}
}
return ans;
}
};
作者:LeetCode-Solution
链接:https://leetcode.cn/problems/matrix-block-sum/solution/ju-zhen-qu-yu-he-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
学习学习~
304. 二维区域和检索 - 矩阵不可变
给定一个二维矩阵 matrix,以下类型的多个请求:
计算其子矩形范围内元素的总和,该子矩阵的 左上角 为 (row1, col1) ,右下角 为 (row2, col2) 。
实现 NumMatrix 类:
NumMatrix(int[][] matrix) 给定整数矩阵 matrix 进行初始化
int sumRegion(int row1, int col1, int row2, int col2) 返回 左上角 (row1, col1) 、右下角 (row2, col2) 所描述的子矩阵的元素 总和 。
示例 1:
输入:
[“NumMatrix”,“sumRegion”,“sumRegion”,“sumRegion”]
[[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]]
输出:
[null, 8, 11, 12]
解释:
NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]);
numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和)
numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和)
numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
-105 <= matrix[i][j] <= 105
0 <= row1 <= row2 < m
0 <= col1 <= col2 < n
最多调用 104 次 sumRegion 方法
思路
比上面的更简单化,用了二维前缀和~,学习了上面题解的边界条件
class NumMatrix {
public int[][] p;
public NumMatrix(int[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
p = new int[m+1][n+1];
for(int i = 1;i<m+1;i++){
for(int j = 1;j<n+1;j++){
//p的index全部往右移1
p[i][j] = p[i-1][j]+p[i][j-1]-p[i-1][j-1]+matrix[i-1][j-1];
}
}
}
public int sumRegion(int row1, int col1, int row2, int col2) {
return p[row2+1][col2+1]-p[row1][col2+1]-p[row2+1][col1]+p[row1][col1];
}
}
/**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix obj = new NumMatrix(matrix);
* int param_1 = obj.sumRegion(row1,col1,row2,col2);
*/