在机器学习的世界里,K-Nearest Neighbors(KNN)算法是一种简单而强大的分类方法。它基于一个直观的想法:相似的数据点往往属于同一类别。本文将通过 Python 的 scikit-learn
库实现 KNN 分类,以经典的鸢尾花数据集为例,展示从数据加载到模型评估的完整流程。
1. KNN 算法简介
KNN 是一种监督学习算法,主要用于分类和回归任务。它的工作原理非常简单:对于一个新的数据点,算法会查找训练数据中与其最近的 K 个点(即“邻居”),然后根据这些邻居的类别进行投票,最终决定新数据点的类别。KNN 的关键在于选择合适的 K 值以及定义“最近”的距离度量方式。
2. 鸢尾花数据集
鸢尾花数据集是机器学习领域中最经典的数据集之一,由英国统计学家和生物学家 Ronald Fisher 在 1936 年首次发表。该数据集包含 150 个样本,每个样本有 4 个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度),分别对应鸢尾花的三种类别:Setosa、Versicolor 和 Virginica。
3. 实现 KNN 分类
接下来,我们将通过 Python 的 scikit-learn
库实现 KNN 分类。以下是完整的代码实现:
# 导入必要的库
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifie