gcj Round 1A 2015 Mushroom Monster

本文探讨了MushroomMonster问题的解决方案,涉及到两种不同的计算方法来确定Kaylin吃掉的蘑菇数量。通过分析输入数据,我们能够计算出在特定时间间隔内最少和最多可能被吃的蘑菇数量。

Problem A. Mushroom Monster

This contest is open for practice. You can try every problem as many times as you like, though we won't keep track of which problems you solve. Read the Quick-Start Guide to get started.
Small input
7 points
Large input
8 points

Problem

Kaylin loves mushrooms. Put them on her plate and she'll eat them up! In this problem she's eating a plate of mushrooms, and Bartholomew is putting more pieces on her plate.

In this problem, we'll look at how many pieces of mushroom are on her plate at 10-second intervals. Bartholomew could put any non-negative integer number of mushroom pieces down at any time, and the only way they can leave the plate is by being eaten.

Figure out the minimum number of mushrooms that Kaylin could have eaten using two different methods of computation:

  1. Assume Kaylin could eat any number of mushroom pieces at any time.
  2. Assume that, starting with the first time we look at the plate, Kaylin eats mushrooms at a constant rate whenever there are mushrooms on her plate.

For example, if the input is 10 5 15 5:

With the first method, Kaylin must have eaten at least 15 mushroom pieces: first she eats 5, then 10 more are put on her plate, then she eats another 10. There's no way she could have eaten fewer pieces.

With the second method, Kaylin must have eaten at least 25 mushroom pieces. We can determine that she must eat mushrooms at a rate of at least 1 piece per second. She starts with 10 pieces on her plate. In the first 10 seconds, she eats 10 pieces, and 5 more are put on her plate. In the next 5 seconds, she eats 5 pieces, then her plate stays empty for 5 seconds, and then Bartholomew puts 15 more pieces on her plate. Then she eats 10 pieces in the last 10 seconds.

Input

The first line of the input gives the number of test cases, TT test cases follow. Each will consist of one line containing a single integer N, followed by a line containing N space-separated integers mi; the number of mushrooms on Kaylin's plate at the start, and at 10-second intervals.

Output

For each test case, output one line containing "Case #x: y z", where x is the test case number (starting from 1), y is the minimum number of mushrooms Kaylin could have eaten using the first method of computation, and z is the minimum number of mushrooms Kaylin could have eaten using the second method of computation.

Limits

1 ≤ T ≤ 100.

Small dataset

2 ≤ N ≤ 10.
0 ≤ mi ≤ 100.

Large dataset

2 ≤ N ≤ 1000.
0 ≤ mi ≤ 10000.

Sample


Input 
 

Output 
 
4
4
10 5 15 5
2
100 100
8
81 81 81 81 81 81 81 0
6
23 90 40 0 100 9

Case #1: 15 25
Case #2: 0 0
Case #3: 81 567
Case #4: 181 244

/***********************************************\
 |Author: YMC
 |Created Time: 2015/4/18 9:45:31
 |File Name: A.cpp
 |Description: 
\***********************************************/
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <string>
#include <cstring>
#include <algorithm>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#define L(rt) (rt<<1)
#define R(rt) (rt<<1|1)
#define mset(l,n) memset(l,n,sizeof(l))
#define rep(i,n) for(int i=0;i<n;++i)
#define maxx(a) memset(a, 0x3f, sizeof(a))
#define zero(a) memset(a, 0, sizeof(a))
#define srep(i,n) for(int i = 1;i <= n;i ++)
#define MP make_pair
const int inf=0x3f3f3f3f ;
const double eps=1e-8 ;
const double pi=acos (-1.0);
typedef long long ll;

using namespace std;
int n;
int da[1005];
int ans1,ans2;
int mtp = 0,tp;
int main() {
	freopen("A-large.in","r",stdin); 
	freopen("out.txt","w",stdout); 
    int T;
    scanf("%d",&T);
    int cas = 1;
    while(T--) {
        ans1 = 0; ans2 = 0;
        scanf("%d",&n);
        rep(i,n) scanf("%d",&da[i]);
        mtp = 0;
        for(int i=1;i<n;++i) {
            tp = da[i-1] - da[i];
            if(tp > 0) {
                mtp = max(mtp,tp);
                ans1 += tp;
            }
        }
        for(int i=0;i<n-1;++i) {
            if(da[i] > mtp) ans2 += mtp;
            else ans2 += da[i];
        }
        printf("Case #%d: %d %d\n",cas++,ans1,ans2);
    }
	return 0;
}




提供了基于BP(Back Propagation)神经网络结合PID(比例-积分-微分)控制策略的Simulink仿真模型。该模型旨在实现对杨艺所著论文《基于S函数的BP神经网络PID控制器及Simulink仿真》中的理论进行实践验证。在Matlab 2016b环境下开发,经过测试,确保能够正常运行,适合学习和研究神经网络在控制系统中的应用。 特点 集成BP神经网络:模型中集成了BP神经网络用于提升PID控制器的性能,使之能更好地适应复杂控制环境。 PID控制优化:利用神经网络的自学习能力,对传统的PID控制算法进行了智能调整,提高控制精度和稳定性。 S函数应用:展示了如何在Simulink中通过S函数嵌入MATLAB代码,实现BP神经网络的定制化逻辑。 兼容性说明:虽然开发于Matlab 2016b,但理论上兼容后续版本,可能会需要调整少量配置以适配不同版本的Matlab。 使用指南 环境要求:确保你的电脑上安装有Matlab 2016b或更高版本。 模型加载: 下载本仓库到本地。 在Matlab中打开.slx文件。 运行仿真: 调整模型参数前,请先熟悉各模块功能和输入输出设置。 运行整个模型,观察控制效果。 参数调整: 用户可以自由调节神经网络的层数、节点数以及PID控制器的参数,探索不同的控制性能。 学习和修改: 通过阅读模型中的注释和查阅相关文献,加深对BP神经网络与PID控制结合的理解。 如需修改S函数内的MATLAB代码,建议有一定的MATLAB编程基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值