51nod 1246 罐子和硬币【贪心】

题目来源: FaceBook HackerCup 比赛题
基准时间限制:1 秒 空间限制:131072 KB 分值: 20  难度:3级算法题


有n个罐子,有k个硬币,每个罐子可以容纳任意数量的硬币。罐子是不透明的,你可以把这k个硬币任意分配到罐子里。然后罐子被打乱顺序,你从外表无法区别罐子。最后罐子被编上号1-n。每次你可以询问某个罐子,如果该罐子里有硬币,则你可以得到1个(但你不知道该罐子中还有多少硬币),如果该罐子是空的,你得不到任何硬币,但会消耗1次询问的机会。你最终要得到至少c枚硬币(c <= k),问题是给定n,k,c,由你来选择一种分配方式,使得在最坏情况下,询问的次数最少,求这个最少的次数。

例如:有3个罐子,10个硬币,需要得到7个硬币,(n = 3, k = 10, c = 7)。
你可以将硬币分配为:3 3 4,然后对于每个罐子询问2次,可以得到6个硬币,再随便询问一个罐子,就可以得到7个硬币了。
Input
输入3个数:n,k,c (1 <= n <= 10^9, 1 <= c <= k <= 10^9)。
Output
输出最坏情况下所需的最少询问次数。
Input示例
4 2 2
Output示例
4

思路:


首先考虑将所有硬币均分到各个罐子中,那么有:every=k/n.那么如果此时有every*n>=c.那么明显我们直接对每个罐子进行查询即可,最坏情况下,也就是需要c次询问。

那么如果有every*n<c.那么我们继续考虑均分,假设此时有数据:45 64 54.那么我们可以分成:

19个2以及26个1.那么此时最坏情况需要45+26+9次询问。那么我们是否有更好的分配方式使得查询更少呢?

我们不难发现,如果我们能够将这26个1,一起合并,变成13组2,那么此时就是分配变成:32个2,以及13个0.那么此时最坏情况需要45+13+9次询问,明显变少了。

那么我们根据简单的分析可以得到贪心的重点:就是我们要设定尽可能少的这种空罐子,使得其他有硬币的罐子只要遇到了,那么将其询问至空为止.这样的查询方式,显然需要用更少的操作。

那么我们分成两种情况:
①every*n>=c,ans=c;

②every*n<c,ans=c+(n-k/(k/n+1))


Ac代码:

#include<stdio.h>
#include<string.h>
using namespace std;
#define ll __int64
int main()
{
    ll n,k,c;
    while(~scanf("%I64d%I64d%I64d",&n,&k,&c))
    {
        ll every=k/n;
        if(every*n>=c)
        {
            ll output=c;
            printf("%I64d\n",output);
        }
        else
        {
            ll output=c;
            output+=(n-k/(k/n+1));
            printf("%I64d\n",output);
        }
    }
}



题目 51nod 3478 涉及一个矩阵问题,要求通过最少的操作次数,使得矩阵中至少有 `RowCount` 行 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行列组合**: - 由于 `N` `M` 的最大值为 8,因此可以枚举所有可能的行组合列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行列需要修改,并且注意行列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float('inf') # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行列的枚举组合以减少计算时间? 2. 在计算行列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值